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Abstract: "In 2034 L1SA is due to be launched, which will provide the opportunity to extract physics from stellar objects and systems that would not
otherwise be possible, among which are EMRIs. Unlike previous sources detected at LIGO, these sources can be simulated using an accurate
computation of the gravitational self-force, resulting from the gravitational effects of the compact object orbiting around the massive BH. Whereas
the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the
time domain. Such computations would not only further corroborate frequency domain calculations/models but also allow for full self-consistent
evolution of the orbit under the effect of the self-force . Given we have a priori information about the local structure of the discontinuity at the
particle, we will show how we can construct discontinuous spatial and temporal discretizations by operating on discontinuous Lagrange and
Hermite interpolation formulae and hence recover higher order accuracy. We will show how this technique in conjunction with well-suited
conformal (hyperboloidal slicing) and numerical (discontinuous time symmetric ) methods can provide arelatively simple method of lines numerical
recipe approach to the problem. We will show, in particular, how this method can be applied to solve the Regge-Wheeler and Zerilli equations with
amoving particle source in the time domain.

/************

Note to organizers. if both my talk and my supervisor, Charalampos Markakis, are selected could this please be after his ? Thank you for your

consideration
*************/"
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Self-force calculations are due in the TD, RWZ and Teukolsky equations with a
source are typically solved as an ODE in the frequency domain, this needs
corroboration.

Approximate 6 as a Gaussian pulse (Harms, Bernuzzi, Brugmann, Zenginoglu)
Construct finite difference representation of 6 (Hughes et al)

Domain decomposition + time dependent grid + jump conditions across the

particle (Canizares, Sopuerta, Field, Hesthaven, Heffernan, Ottewill, Diener,
Warburton, Wardell et all)
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[—82 + 02 — VAW/Z () |7 = Gpy W' 2(t, )8(x — E(2)) + FimdP¥/2(t, 2)8' (x — E(1))

Decompose in spin weighted spherical harmonics, obtain 1+1D RWZ equation
Use hyperboloidal grid covering this 2D Lorentzian manifold from the horizon
to g+

Evolve in time using the Method of Lines recipe
* Discontinuous collocation methods for spatial discretization
* Discontinuous symmetric methods for time integration
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We take our equation:
(=07 + 02 = Vi()]dim = Gun (£, X)8(x —§(1)) + Fim (£, x)8' (x — E(1))
Reduce it to a first order system

dU—LU S U—¢
e 0

Discretize U,L in space using finite difference, pseudospectral or Fourier
collocation nodes

Integrate in time using time symmetric methods as a coupled ODE system,
example Hermite integration (Haris’s talk)
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N order polynomial

p(x) = ?’:0 Cj T

Collocation conditions
p(x) = f;, i=01,..N

Solution: Lagrange interpolating polynomial

N

N
PG =) fiomem= || =
JE

k=0k=j
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Nth order piecewise ponnom}\;aI

p() = ) [0(x = D' + 0 —x)c; |
j=0
Collocation conditions
p(x) = f;, i=01,... N

Jump conditions
p®ED —p®E) =], k=012,....
Solution: Interpolating piecewise polynomial

p(x) = Xo[fj(x) + A(x; — & x — §)|m;(x)
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Interpolation

p(x) = XV o[fi () + A(x - & x, - ©)],

Differentiation

N
P @) = ) DE[FG) + Ay - §x - 9]
j=0

Az —§xi =) = [60x; =8 — 6(x; — )] %(xj -9

k
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We use the distributional forced 1 + 1D wave equation as our toy model:
—02P + 02y = G(£)8(x — vt)

Approximate P(t, x) as a piecewise polynomial:
(e = ) [y + 8 (x5 — 50 x - §0) | ;)
j=0

A is piecewise constant wrt x so not gifferentiated when approx. spatial derivatives

oPU(L) ~ ) Dl U+ 4 (% - 50 xi — §0)]
j=0

No summation over i, so rightmost term reduces to just a vector of length N+1, i.e
PO = ) 0l [8 (3 - 80 % - 50|
=0
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We can express y, as a linear combination of

W00 = ) JiObi(x:5©)
i=0

The jumps J;are obtained by the generalization of the Frobenius method and given by the recurrence
relation

Jo=vG®)
Ju=Y*(F(®) = Jo§ = 2Jot)
Jn+2 = YZ(]n — 2Jn+18 _]n+1E)

For any other terms in a PDE such as a potentigol or hyegrboloidal coefficients we use

FOOW (x,6:5(1)) = (Z Wm ) (’f)) FO (O Y mr(©

r=0
and update J_,, accordingly.
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Figure 5: Numerical solution using the discontinuous collocation methods with an order 2 Hermite integration time
stepper. We selected initial function to be the exact solution provided in
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Figure 6: The figure on the left shows the difference between the numerical solution and the exact solution for
decreasing time steps. The figure on the right demonstrates that the |~ error norm scales as At2, as expected
of our method.
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Implement following transformation

{ t =1 — h(o) t=r—%(ln0+1n(1—c)—§)
x = g(o) X =%(§+1n(1—0)—1n0)

where here we follow the minimal gauge, slicing found in

H == (=g"8:9%(t,0) + g°°8,$2(1, o) + V(o) Y2 (1, 0))
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For any other terms in a PDE such as aogotentlal or hyperboloidal coefficients we use

FOOW! (x, £:8() = (Z W z (T)) FOEE)mr (B

and update J ., accordingly.

We simply update our recurrence relation accordingly to the now hyperboloidal RWZ
equation, for minimal gauge update is as follows:

Jo = Yh26Q(®) |
Ji= Yhz(F(u(T)) —Jo§ — 2Jo+ C(§)]p + B(E)]OE)

]n+2 = th(jr'l - 2jn+1€ _]n+1$) . yhz Z (Z (f) (Cr(%—)]n—?%l - Br(g)(jn—r - Sé]n—r+1) + Hr(g)]n—r))

n=0 \r=0

+yR? By (20 (1) (ED ¢ nrz—r — AT () az-r))
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Pros:
Fixed grid
Particle can be anywhere

Discontinuities handled by adding jump terms to the Lagrange or Hermite
interpolation formulae

Recursive jump relations inform a priori our discontinuous numerical method

Cons:
* Need large number of jumps to reach machine precision (~10-30)
* Complexity of jump relations increase in hyperboloidal slicing

07/06/2021 Lidia Gomes Da Silva

Pirsa: 21060006 Page 15/16




Use ¢,,, to reconstruct metric perturbations in the time domain

Gravitational wave extraction
Compute hyperbolic scattering angles (for comparison with PN/PM/EOB)

Self-consistent evolution under the influence of GSF in TD

Apply the waveform model in Kerr and perform equivalent calculations for
the Teukolsky equation with source (Michael O’Boyle and Nelson Eiro)
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