Title: Discontinuous collocation methods and self-force applications

Speakers: Charalampos Markakis

Collection: The 24th Capra meeting on Radiation Reaction in General Relativity

Date: June 07, 2021 - 8:45 AM

URL: http://pirsa.org/21060005

Abstract: Numerical simulations of extereme mass ratio inspirals face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a-priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge-Wheeler-Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.

CHARALAMPOS MARKAKIS

Queen Mary University of London

M.F. O'Boyle (Illinois), L. Barack, R. Panosso Macedo (Southampton), L. Gomes Da Silva, N. Eiro, J. Valiente Kroon (London), P.D. Brubeck (Oxford)

DISCONTINUOUS TIME-SYMMETRIC METHODS AND SELF-FORCE APPLICATIONS

Capra 24, Perimeter Institute, June 7-11, 2021

EMRIs – COMPUTATIONAL CHALLENGES

- EMRIs will spend months/years in LISA band, instead of the few seconds/ milliseconds inspirals spend in LIGO band.
- Disparate mass/length scales. CFL condition restricts time-step.
- EMRIs computationally intractable for traditional numerical relativity.
- For perturbations in Schwarzschild spacetime, linearized Einstein equations reduce to the Bardeen-Press (or Regge-Wheeler-Zerilli) equations.
- Computing GSF in the time domain requires solving PDEs with with distributional sources. Discontinuous discretization (in space+time), and methods for long-time evolution.

1+1 BARDEEN-PRESS EQUATION

Bardeen-Press equation

$$[(\nabla_a + s\Gamma_a)(\nabla^a + s\Gamma_a) + V_l^s(x)]\psi_{lm}^s(t, x) = 0$$

- Modal (spin-weighted spherical harmonic) expansion in θ, ϕ
- Nodal (discontinuous collocation) method in $x = r^*$
- Symmetric (2-point Taylor or Hermite) method in t

₩.

1+1 BARDEEN-PRESS EQUATION

• Bardeen-Press equation

$$[(\nabla_a + s\Gamma_a)(\nabla^a + s\Gamma_a) + V_l^s(x)]\psi_{lm}^s(t, x) = 0$$

$$\begin{split} S &= \int \sqrt{-\eta} \, dt dx \, \left[(\partial_a + s\Gamma_a) \, \psi^{(-s)} \, \eta^{ab} \, (\partial_b + s\Gamma_b) \, \psi^{(s)} + V_l^s \, \psi^{(-s)} \psi^{(s)} \right] \\ T_{ab} &= (\partial_a - s\Gamma_a) \psi^{(-s)} \partial_b \psi^{(s)} + (\partial_a + s\Gamma_a) \psi^{(s)} \partial_b \psi^{(-s)} + \eta_{ab} \mathscr{L} \end{split}$$

1+1 REGGE-WHEELER-ZERILLI EQUATION

Regge-Wheeler-Zerilli equation

$$[\nabla_{a}\nabla^{a} + V_{l}^{s}(x)]\psi_{lm}^{s}(t,x) = 0$$

$$S = \int \sqrt{-\eta} dt dx (\partial_{a}\psi^{\star} \eta^{ab} \partial_{b}\psi + V_{l}^{s}\psi^{\star}\psi)$$

$$T_{ab} = \partial_{a}\psi^{\star}\partial_{b}\psi + \partial_{a}\psi\partial_{b}\psi^{\star} + \eta_{ab}\mathscr{L}$$

Ш.

1+1 REGGE-WHEELER-ZERILLI EQUATION

• U(1) gauge symmetry $(\psi \rightarrow e^{ia}\psi)$ is Noether-related to conserved current:

$$J^a = i\sqrt{-\eta}(\psi^*\partial^a\psi - \psi\partial^a\psi^*)$$

Poincaré transformations give rise to "Ehrenfest theorem":

$$\frac{d}{dt} \int_{\Sigma} \sqrt{-\eta} \, dx \, k^a T_a^t = -\int_{\Sigma} \sqrt{-\eta} \, dx \, \psi^* \, \pounds_k V \psi$$

1+1 REGGE-WHEELER-ZERILLI EQUATION

• U(1) gauge symmetry $(\psi \rightarrow e^{ia}\psi)$ is Noether-related to conserved current:

$$J^{a} = i\sqrt{-\eta}(\psi^{\star}\partial^{a}\psi - \psi\partial^{a}\psi^{\star})$$

Poincaré transformations give rise to "Ehrenfest theorem":

$$\frac{d}{dt} \int_{\Sigma} \sqrt{-\eta} \, dx \, k^a T_a^t = -\int_{\Sigma} \sqrt{-\eta} \, dx \, \psi^* \, \pounds_k V \psi$$

$$\frac{d}{dt}\langle p\rangle = -\langle \partial_x V\rangle \qquad \frac{d}{dt}\langle E\rangle = \langle \partial_t V\rangle \qquad \frac{d}{dt}\langle t\,p - x\,E\rangle = -\langle (t\partial_x + x\partial_t)V\rangle$$

,₩,,

1+1 CANONICAL EQUATIONS

RWZ action

$$S = \int \sqrt{-\eta} \, dt dx \, (\eta^{ab} \, \partial_a \psi^{\star} \, \partial_b \psi + V_l^s \psi^{\star} \psi)$$

Hamiltonian

$$\mathscr{H} = \frac{\pi^* \pi}{\sqrt{-\eta} \eta^{tt}} + \sqrt{-\eta} \left(\eta^{xx} \partial_x \psi^* \partial_x \psi - V_l^s \psi^* \psi \right)$$

Canonical RWZ equation

$$\partial_t \psi = -\frac{\pi}{\sqrt{-\eta}\eta^{tt}}, \quad \partial_t \pi = \partial_x (\sqrt{-\eta} \eta^{xx} \partial_x \psi) - \sqrt{-\eta} V_l^s \psi$$

₩.,

SYMPLECTIC STRUCTURE

The RWZ Hamiltonian gives rise to a conserved symplectic structure

$$\Omega[(\psi_1, \pi_1), (\psi_2, \pi_2)] = \int_{\Sigma} (\pi_1 \psi_2 - \pi_2 \psi_1)$$

 Analogous expressions hold for GR and the Teukolsky equation Crnkovic & Witten, 1986
 Prabhu & Wald, CQG 35, 235004, 2018
 Green, Hollands & Zimmerman, CQG 37, 075001, 2020

Theorem 1: Hermite integration preserves the symplectic structure for quadratic Hamiltonians Theorem 2: Hermite integration preserves energy & U(1) charge and for quadratic Hamiltonians

$$\frac{d\mathbf{U}}{dt} = \mathbf{L}\mathbf{U}$$

- Apply fundamental theorem of calculus and discretize in time $\mathbf{U}^{n+1} - \mathbf{U}^n = \int_{t_n}^{t_{n+1}} dt \, \mathbf{L} \mathbf{U}(t)$
- ▶ 1-point Taylor expansion

$$\mathbf{U}^{n+1} \simeq \left(\mathbf{I} + \Delta t\mathbf{L} + \frac{(\Delta t\mathbf{L})^2}{2!} + \frac{(\Delta t\mathbf{L})^3}{3!} + \frac{(\Delta t\mathbf{L})^4}{4!} + \dots\right)\mathbf{U}^n$$

SYMPLECTIC STRUCTURE

The RWZ Hamiltonian gives rise to a conserved symplectic structure

$$\Omega[(\psi_1, \pi_1), (\psi_2, \pi_2)] = \int_{\Sigma} (\pi_1 \psi_2 - \pi_2 \psi_1)$$

 Analogous expressions hold for GR and the Teukolsky equation Crnkovic & Witten, 1986
 Prabhu & Wald, CQG 35, 235004, 2018
 Green, Hollands & Zimmerman, CQG 37, 075001, 2020

Theorem 1: Hermite integration preserves the symplectic structure for quadratic Hamiltonians Theorem 2: Hermite integration preserves energy & U(1) charge and for quadratic Hamiltonians

$$\frac{d\mathbf{U}}{dt} = \mathbf{L}\mathbf{U}$$

- Apply fundamental theorem of calculus and discretize in time $\mathbf{U}^{n+1} - \mathbf{U}^n = \int_{t_n}^{t_{n+1}} dt \, \mathbf{L} \mathbf{U}(t)$
- ▶ 1-point Taylor expansion

$$\mathbf{U}^{n+1} \simeq \left(\mathbf{I} + \Delta t \mathbf{L} + \frac{(\Delta t \mathbf{L})^2}{2!} + \frac{(\Delta t \mathbf{L})^3}{3!} + \frac{(\Delta t \mathbf{L})^4}{4!} + \dots \right) \mathbf{U}^n$$

$$\frac{d\mathbf{U}}{dt} = \mathbf{L}\mathbf{U}$$

- Apply fundamental theorem of calculus and discretize in time $\mathbf{U}^{n+1} - \mathbf{U}^n = \int_{t_n}^{t_{n+1}} dt \, \mathbf{L} \mathbf{U}(t)$
- 2-point Taylor expansion (Hermite integration)

$$\left(\mathbf{I} - \frac{\Delta t \mathbf{L}}{2} + \frac{(\Delta t \mathbf{L})^2}{12} + \dots\right) \mathbf{U}^{n+1} \simeq \left(\mathbf{I} + \frac{\Delta t \mathbf{L}}{2} + \frac{(\Delta t \mathbf{L})^2}{12} + \dots\right) \mathbf{U}^n$$

$$\frac{d\mathbf{U}}{dt} = \mathbf{L}\mathbf{U}$$

- Apply fundamental theorem of calculus and discretize in time $\mathbf{U}^{n+1} - \mathbf{U}^n = \int_{t_n}^{t_{n+1}} dt \, \mathbf{L} \mathbf{U}(t)$
- 2-point Taylor expansion (Hermite integration)

$$\mathbf{U}^{n+1} \simeq \left(\mathbf{I} - \frac{\Delta t \mathbf{L}}{2} + \frac{(\Delta t \mathbf{L})^2}{12} + \dots\right)^{-1} \left(\mathbf{I} + \frac{\Delta t \mathbf{L}}{2} + \frac{(\Delta t \mathbf{L})^2}{12} + \dots\right) \mathbf{U}^n$$

TIME-SYMMETRIC INTEGRATION IS SYMPLECTIC

 Theorem 1 proof: For quadratic Hamiltonians, a time step via Hermite integration amounts to a canonical transformation:

$$J = \frac{\partial(\psi^{n+1}, \pi^{n+1})}{\partial(\psi^n, \pi^n)} = 1 \quad \text{interms}$$

• RK time steps fail to preserve the Jacobian and are non-canonical.

TIME-SYMMETRIC INTEGRATION PRESERVES NOETHER CHARGES

CONCLUSIONS

- Explicit methods based on 1-point Taylor expansion (e.g. Runge-Kutta) are not time-symmetric.
 Conditionally stable. Noether symmetries and symplectic structure violated. Simulated EMRIs lose energy to bad numerics (instead of gravitational radiation).
- Implicit methods based on 2-point Taylor expansion (Hermite integration) are time-symmetric.
 Unconditionally stable. Implicit methods do not incur extra cost for linear PDEs (matrix pre-inversion).
 Energy, U(1) charge and symplectic structure conserved. Highly desirable features for long-time numerical evolution of EMRIs.
- Can be generalized to arbitrarily high order and to discontinuous problems (method of undetermined coefficients).

C. Markakis et al. CQG 38 075031 (2021)
C. Markakis et al. [arXiv:1901.09967]

,₩,

TIME-SYMMETRIC INTEGRATION PRESERVES NOETHER CHARGES

٠.