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Abstract: We introduce the basic elements of tensorial group field theories (TGFTS) for quantum gravity, emphasizing how they encode quantum
geometry and their relation with canonical loop quantum gravity and spin foam models. Next, we discuss briefly the issue of continuum limit and
how it could be understood in this framework.

In the bulk of the talk, we overview the work on the extraction of an effective cosmological dynamics from TGFTs, inspired by the idea of the
universe as a quantum gravity condensate. In this context, we emphasize: the need for appropriately coarse-grained states capturing collective
dynamics and the role of relational observables and their construction. We discuss what the theory says (so far) about the fate of the big bang
singularity at the beginning of our universe and how it suggests a quantum gravity origin for (phantom) dark energy.
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The framework:

Tensorial (Group) Field Theories
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Tensorial Group Field Theories: key elements

Quantum field theories for the fundamental QG degrees of freedom, generating superposition of (simplicial)
cellular complexes, from which spacetime should emerge in some approximation and "phase" of theory

generalization of matrix models for 2d gravity
(Ambjorn, David, Migdal, Duplantier, Kazakov, ....)

- field theory action with non-local interactions, describing how simplices connect to form higher-cells

details depend on (class of) models

S(p, @) = lf[dgi]tp(gi);c(gé)@(gé) + % /[dgm]ﬂﬂ(gﬂ)----CP@D)V(Qma§:‘D) + cec.

2
“combinatorial non-locality” /
in pairing of field arguments
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note on nomenclature

tensor models

tensorial field theories

group field theories

tensorial group field theories

different criteria adopted in the literature

here:
TGFTs for general formalism

"quantum-geometric TGFTs" = class of
models with stronger relation to LQG,
spin foam models, simplicial gravity path
integrals, quantum geometry

basic object is tensor
domain of tensor is finite set

domain of tensor is group manifold

domain of tensor is more general manifold

interactions are combinatorially non-local

interactions are bubble (unitary) invariants
(tensorial nature of field is prominent))

interactions are simplicial (or other non-bubble)

propagator involves differential operator
(proper "dynamical” field theory)

propagator only involves correlations
tensor possesses special group-theoretic symmetries

interaction kernels implement additional
group- theoretic conditions on dynamics
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Tensorial Group Field Theories: key elements

Quantum field theories for the fundamental QG degrees of freedom, generating superposition of (simplicial)
cellular complexes, from which spacetime should emerge in some approximation and "phase" of theory

generalization of matrix models for 2d gravity
(Ambjorn, David, Migdal, Duplantier, Kazakov, ....)
- field theory action with non-local interactions, describing how simplices connect to form higher-cells

details depend on (class of) models
_ 1 — A _ _
5. 9) =5 / [dgilo(9:)C(9:)p(9:) + / [dgia)p(gi1)---0(3iD)V(gia, Gip) + c.c.

“combinatorial non-locality” /
in pairing of field arguments
example of combinatorial non-locality: rank-3 simplicial tensor model

fundamental building block of (quantum) space: 75,k : Zirg — R

1 A
S(T) = 3 3 TijiTrji — VNG P % T S
1,7,k ’ ijklmn
e |
| I'. ] | L
— e ————— . .
ol = ‘
' |
| o« |
=R a
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Tensorial Group Field Theories: key elements

Quantum field theories for the fundamental QG degrees of freedom, generating superposition of (simplicial)
cellular complexes, from which spacetime should emerge in some approximation and "phase" of theory

generalization of matrix models for 2d gravity
(Ambjorn, David, Migdal, Duplantier, Kazakov, ....)

- field theory action with non-local interactions, describing how simplices connect to form higher-cells
details depend on (class of) models

! / [dgile(9:)K (g:)e(g:) + % / [dgial(gi1)---(@iD)V(gia, GiD) + cec.

2
“combinatorial non-locality” /
in pairing of field arguments

* Feynman diagrams are dual to cellular complexes

S(p, @) =

 perturbative expansion of quantum dynamics gives
sum over cellular complexes of all topologies

)\Nr
Z = / DyDg et 5> (¥:9) Z
sym

* Feynman amplitudes should be related to discrete gravity (ln QG models)

example'

Zszk kji — 4‘\/— Z T ik Thim LmjnTnii :. :- | -: | &

1 .k i1klmn

amplitudes purely combinatorial -
geometry of equilateral triangulations
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TGFT: general aspects

Gurau, Ryan, Tanasa, Bonzom, Rivasseau, Ben Geloun, Benedetti, ........
» link to lattice gravity
in simplest models, amplitudes depend purely on combinatorics of Feynman diagrams
link to discrete gravity in terms of dynamical triangulations: dual simplicial complexes as equilateral
in richer, quantum geometric models, much richer lattice gravity/geometry (see later)
* making mathematical sense of the formalism:

« controlling the TGFT perturbative expansion

colors added to label combinatorial structures allow precise control over their topology
large-N limit can be defined and controlled (melonic dominance)
multiple-scaling limits can be also defined for simple models

such tools crucial for TGFT renormalization

* resumming the perturbative series and critical behaviour
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Tensorial Group Field Theories: key elements

Quantum field theories for the fundamental QG degrees of freedom, from which spacetime
should emerge in some approximation, possibly only in some "phase" of the theory

+ field theory action with non-local interactions, describing how simplices connect to form higher-cells

details depend on (class of) models

S(e,®) / [dgilp(g:)K(9:)(9:) + DI f [dgial0(9i1)---¢(3iD)V(ia, giD) + c.c.
“combinatorial non-locality” /
in pairing of field arguments |

+ Feynman diagrams are dual to cellular complexes

+ perturbative expansion of quantum dynamics gives
sum over cellular complexes of all topologies

)\NT
/ DD ¢t Sr(#7) Z
sym

* quantum geometric models:

Feynman amplitudes can be represented equivalently as: lattice gravity path integrals
(like quantum Regge calculus) or spin foam models (covariant LQG dynamics)

quantum states are second quantized simplices/spin networks
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TGFTs for Quantum Gravity:

Quantum geometric models
and relation to canonical LQG and spin
foam models

irsa: 21050026 Page 10/49



TGFT “atom of space” in quantum geometric models

Barbieri '97; Baez, Barrett, '99; Rovelli, Speziale, '06; Freidel, Krasnov, '07; Livine, Speziale, '07;
Bianchi, Dona, Speziale, '10; Baratin, DO, '11; ......

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron *

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)
[ Ainl =bl eR  b;-N=0 ) b =0 ]
i

choosing N=(1,0,0,0: b < (0,b0%) b? € R3

upon assigning a symplectic structure to vector space, isomorphism: 511(2) = RS

. 4
part of classical phase space [T SU(2)]” Phase space for tetrahedron

conjugate variables: group elements { gi} — discrete connection (extrinsic geometry) on links dual to triangles

note:
equivalently: constrained area 2-forms ~ so(3,1) Lie algebra elements - starting point of construction
leading to SO(3,1)-based phase space B,;” — NI A bg‘{ (N xe A e) of spin foam models

one can map SO(3,1) description to/from SO(3) one

subject to the closure + simplicity constraints --> submanifold of same phase space

extended geometric triangulations: tetrahedra with boundary data identified,
and assigned parallel transports along paths connecting respective centers
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! )
Barbieri '97; Baez, Barrett, '99; Rovelli, Speziale, '06; Livine, Speziale, '07; N
Quantum geometry L. Freidel, K. Krasnov, '7; Bianchi, Dona, Speziale, '10; Baratin, DO, '11; ......

Hilbert space

Hy = L2 (Gd;d.u'Huar) ' " Htet

+ constraints

note: can work with G= SO(3,1) or G = SO(3), and define map between Hilbert spaces

. : . . b,
different representations for Hilbert space of quantum tetrahedron (collection of tetrahedra):

+ group representation (functions on group manifold)

+ Lie algebra representation (non-commutative functions on Lie algebra)

+ spin representation (functions labeled by eigenvalues of compatible operators)

¥(g1, 92,93, 94) = Z plidadeds, . DR {g0)e D2 6 (gd)

mini myny

Hilbert space of spin network vertex
Ji,mi,n;

a lot of interesting quantum geometry, from quantizing geometric phase space observables

Hilbert space of quantum geometric TGFTs: Fock space

F(Hy) = By sym {( W 'Hz(: )®.-® ’H(V))}
6@, ¢'@)] =16@9) [p@, 6@ =[¢'@, ¢'@)] =0
all geometric operators have 2nd quantized counterpart

e.g. total space volume (extensive quantity): Vi, = / [dgi][dg;-]@T(.qi)V(gi,ggjg&(qJ Z

(bosonic statistics assumed)

) ¢(J;)

volume of single tetrahedron (from simplicial geometry)
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Entanglement graphs E. Colafranceschi, DO, '20

« graphs structures are associated to special entangled TGFT states within Fock space

+ start with many-body wavefunction for N TGFT quanta (= N vertices) (..., e j’ o
g
+ associated to vertices x,y connected e — |9'3
by link i if invariant under group action: e __ i
] dhy(..., g<h, .. g/ h,.) = (... gfg! ™}, ) v % - A X A
» can be enforced by "link map": N S ga‘

P X @H) — Inv(HI®H!)  PF ::fdhdg,-"dg?’ &) (g7h|® g7 ) (&7 h]

which entangles x and y along link i

- can generalize to arbitrary graph: / lhy} = H P:‘Nyhb)
state associated to graph /Al}y:l "disconnected" state
adjacency matrix of graph
- applies to states in pre-Fock space pre-F(H) = & ., Hy then projected by symmetrization
« graphs = patterns of entanglement among TGFT quanta - "primitive entanglement/geometry correspondence”

. i i G. Chirco, DO, M. Zhang, '17;
TGFT states are generalized and 2nd quantized random tensor network states E. Golafranceschi. DO, 20

+ reformulation in language of tensor networks useful for defining and analyzing holographic QG maps
E. Livine, '21; G. Chirco, E. Colafranceschi, DO, '21
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TGFT and Loop Quantum Gravity: quantum states

DO, 13
E. Colafranceschi, DO, '20

+ TGFTs can be seen as a "2nd quantized Loop Quantum Gravity" (but even less "spatiotemporal”)
 key point: LQG states (spin networks) for connected graphs = entangled quantum many-body TGFT states

» LQG Hilbert space of any (4-valent) graph is faithfully embedded in TGFT pre-Fock space

- graph-entangled states form subspace of Fock space = LQG Hilbert space for same graph
(scalar product induced by Fock space scalar product)

 full TGFT Fock space obtained by summing over vertices and imposing permutation symmetry
i 2 174
F(Hy) = Bvo sym{( DeoHY @ @M, ))}

« full Hilbert space of canonical Loop Quantum Gravity is quite different ~ Ashtekar, Lewandowski, Okolow, Sahimann,

Rovelli, Smolin, Thiemann, Fleischack, .....

(more continuum spacetime ingredients)

« TGFT: abstract graphs - LQG: from embedding into (canonical) manifold

« different way of organizing and intending spin networks: distinctively "discrete-first" perspective in TGFT

TGFT: states associated to different graphs with same number of vertices ARE NOT orthogonal
TGFT: states associated to graphs with different number of vertices ARE orthogonal

no cylindrical equivalence, no projective limit in TGFT - required in LQG to interpret data as
corresponding to continuum connection or metric fields

« permutation symmetry imposes label-independence (counterpart in LQG? recall: no embedding)
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Tensorial group field theory: dynamics of quantum space

Dynamics governs gluing processes and formation of extended discrete structures i Freiial, i
. Freigael, ,

, . L , , . , DO, '09; DO, ‘14
Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

S(0%) = 5 [ gp@Kle)e(9) + 1; [1dgiale(gn)- @DV (Giargin) +  ce

“combinatorial non-locality” /
in pairing of field arguments

Example: simplicial interactions

a
123 4

3
1 2E ¥
e

z
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Tensorial group field theory: dynamics of quantum space

Dynamics governs gluing processes and formation of extended discrete structures L. Freidel, '06:
DO, '09; DO, ‘14
Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

S(p,p) = %f[dgi}@(gé)"c(gz‘)@(gi)‘l' %/[dgia](ao(gil)----‘P(g’iD)V(gimgz’D) + c.c.

“combinatorial non-locality” /
in pairing of field arguments

g _ 2\NVr
Z = [ DpDp € N (17 R— E W Ar
sSYym
~ SY

Feynman diagrams = stranded

diagrams dual to cellular
complexes of arbitrary topology

. : amplitude for each
sum over triangulations/complexes . :
triangulation/complex
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Tensorial group field theory: dynamics of quantum space

Dynamics governs gluing processes and formation of extended discrete structures L. Freidel, '06:
DO, '09; DO, ‘14
Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

S(p,p) = %f[dgz‘}@(gé)"c(gé)@(gi)‘l' %/[dgia](ao(gil)----‘P(g’iD)V(gimgz’D) + c.c.

“combinatorial non-locality” /
in pairing of field arguments

. _ 2\NVr
Z = [ DpDp € PN (1) B— E —  _ Ar
— sym(I')
Feynman amplitudes (model-dependent):
Feynman diagrams = stranded _— e;qullvalently: ma— ¢
diagrams dual to cellular spin ogm n;o ekS (ium—ovgr—t Ifgges 0]
complexes of arbitrary topology A WO,r i Cova”?n )
Reisenberger,Rovelli, '00
. lattice path integrals
[sum over t‘r-ian ulations/com Iexes] ampitiide’far esch RS alggbra v:anables)
9 P triangulation/complex A Beletin; DO 1
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TGFT and spin foam models

complete definition of SF model: quantum amplitudes for all spin foam complexes + organization principle

sum over spin foam complexes *’7
refinement of spin foam complexes
Bahr, Dittrich, Steinhaus, .....

spin foam model with sum over complexes as perturbative expansion of TGFT (valid for any SF model)

R. De Pietri, L. Freidel, K. Krasnov, C. Rovelli, '99;
M. Reisenberger, C. Rovelli, '00
zo)y= Y. J[4r0D [[A D) [ A1)
{J}.{T}4.5" 8.8 f e v any combinatorics
DO, J. Ryan, J. Thiirigen, '14

41(7) KALD~KG) e o)
Z(P)H AE(J,I) H V(J,I)NV(Q) W,

AT )
1 —— A . i
5, 9) =5 / [dgilo(9:)K(gi)e(9:) + 53 / [29ialp(gi1)----p(§ip)V(9ia, Gin) + c.c.
using local expression of SF

amplitudes, needed for composition
along (portions of) boundaries

M. Finocchiaro, DO, '18 S5 (0.3) 2\Nr
Z = | DpDp ' =2 \$¥ = —— = A ZI)=A
/ ©DPp Yy sy AT (T) = Ar
r

advantages:
+ prescription for combinatorial weights + parametrize SF ambiguities
+ ways to go beyond spin foams (non-perturbative & collective physics)
« QFT tools for extracting physics

Page 18/49
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Example: EPRL-like TGFT model

TGFT action
_ E : —Juitl Jugl2 Juy Jug L1182 Z : I I = Jug b ( ug L
— l’,Dmﬂl ©mo (%)nlﬂl My + g (pn:;la 7/5 -+ (lg-z?zzﬂa 7/5
jtfn,.!.'l jﬂai a=1 a=1
Mg ;sta Muyg ,sta
Vs = 7/5(]1;1 yoonsJugy MhugsereyMygsblyee- 5;,5) 4-simplex interaction
both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
3= § j1j2j3jata Jajsjedria WS ENENETE: Jojejajiot4 1078757145
T T2 s ity Lp?nq?ﬂﬁ'm.g'mq M7IM3 Mgy (pmg-mﬁm-gmm minrmgrsm]

JiyTMiybi

™ 7}__}(:;1 s it w0 ba)] G reproduces EPRL-like spin foam amplitudes

with: -~ : _ implici ints:
Y5 (Jaby ta) = Z / dpq(n? + p2) ® i (jap) from simplicity constraints:
Tia a p=a9n n=24
a - tetrahedra, (ab) triangles  15757,(2,) (2925, 27ab7); (10, Pa)) i . gmi..ma AP

np E

(J1,m1)...(Ja,ma)
in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

as in Engle, Livine, Pereira, Rovelli, '07  other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....
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TGFT for 4d quantum geometry coupled to matter

guideline for TGFT model-building from pure quantum geometry extends to matter coupling:

extend domain of TGFT field, the define TGFT action so that Feynman amplitudes are lattice path integrals
for gravity coupled to matter

- to later apply relational strategy for reconstruction of "quantum spacetime", need matter degrees of freedom

— work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field

« TGFT fields now include new real variable (value of scalar field) elgr) — &(g1,x)

with consequent extension of field operators, quantum states and operators on Fock space

- corresponding TGFT action is: S=K+U+U

Rl K = f dgr dhy / dxdx’ @(gr, x)K (g1, h1; (x — X)) (b1, X")
U = higher order in TGFT field, non-local in _ / .
guantum geometric data, local in scalar field data U= /[dg]dx Lp(g, X)"'C'O(g : X) V({g}? X)

+ only one independent value of scalar field at each 4-simplex --> values of scalar field variables for all
TGFT fields in the TGFT interaction should be identified, i.e. interaction is local in scalar field variables

« TGFT propagator takes form of exponential function of differences of values of scalar field variables
--> TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable
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TGFTs for Quantum Gravity:

continuum limit
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How to extract continuum gravitational physics?

; . AN
2= [Deppetne® = 3 sym(T) "*

I
— Zw(A) /DQA eisﬂ-(g&) == /Dg eiS(g)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity
defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model
what is continuum physics in TGFT (from perspective of in-built lattice gravity)?

(and taking into account results about continuum limit of classical lattice gravity)

coarse-grained description of QG data no detailed info on lattice data -

- coarse grained quantum states result of summing over lattice data

collective QG physics result of collective quantum dynamics of
- need distinctively field-theoretic approximations fundamental discrete degrees of freedom

Pirsa: 21050026 Page 22/49



Extracting continuum spacetime & gravitational physics

* ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action
should be used to compute continuum geometric observables and their quantum dynamics

i i r
Z:/praezsk(w) = S AN Z“’ /DQA i Sa(ga) /Dg 4 S(9)
sym(T
r

F\(J) = InZ,[J] l¢] = supy (J c P — F(J)) (p) = ¢ "mean field"

i.e. evaluate (analytically? numerically?) full quantum dynamics!
(full sum over triangulations weighted by simplicial gravity path integral)

expect different phases
and phase transitions

as result of quantum dynamics
(what are the phases of LQG?)

geometric phase

which ones are “geometric”

(it

in which one does spacetime emerge?
Koslowski, '07: DO, ‘07

A. Ashtekar, J. Lewandowski, '94  T. Koslowski, H.
Sahlmann, 10  B. Dittrich, M. Geiller, '14; B. Bahr, B.
Dittrich, M. Geiller, '16; S. Gielen, DO, L. Sindoni, '13
A. Kegeles, DO, C. Tomlin, '16
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TGFT (non-perturbative) renormalization: results and insights

mostly for TGFTs with "tensorial" interactions: invariant under unitary transformations
Ue: B3(Q) = LA(G)
theory space identified by (bipartite) r+1 edge coloured graphs b / /

TGFTs (with dynamical tensorial dofs) abelian, non-abelian, different ranks, with
gauge symmetry, different interactions, ...

Benedetti, Ben Geloun, Bonzom, Carrozza, Gurau, Harribey, DO, Rivasseau, Tanasa, Vignes-Tourneret, ....

14
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TGFT (non-perturbative) renormalization: results and insights

mostly for TGFTs with "tensorial" interactions: invariant under unitary transformations
Ue: B3(Q) = LA(G)
theory space identified by (bipartite) r+1 edge coloured graphs b /

=

TGFTs (with dynamical tensorial dofs)  abelian, non-abelian, different ranks, with
gauge symmetry, different interactions, ...
Benedetti, Ben Geloun, Bonzom, Carrozza, Gurau, Harribey, DO, Rivasseau, Tanasa, Vignes-Tourneret, .... ¢ /

® perturbative renormalizability + asymptotic freedom/safety for several models
What about non-perturbative RG flow? phase transitions?

several results for broad class of models
® [Pithis/Thirigen '20-'21] infinite cyclic-melonic potential on G, LPA
« small-N (IR): equivalence with O(N) model in d=0

« symmetry restoration and no phase transition for fixed group size a
+ phase transition (Wilson-Fisher FP, above critical dimension) in limit a-->00
* phase transition can be described by mean field theory
+ close to FP, TGFT behaves similarly to local theory in d = dim(G)(r-1)
» room for asymptotic safety ® need to extend analysis to:
® improved truncations + better analysis of NGFP

@ hon-compact groups (e.g. Lorentz)

@ matter coupling, i.e. both non-local and local directions
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Renormalization of quantum geometric TGFTs

quantum amplitudes (and TGFT kernels) much more involved
models based on simplicial interactions, no coloring;

generalization to non-simplicial interactions possible, but then no geometric justification

what we know: C. Perini et al., '08; T. Krajewski et al., "10; J. Ben Geloun et al, '10; A. Riello, '13; V. Bonzom, B. Dittrich, '15;
Y. Chen, '16; P. Dona’, “18; P. Dona et al, '19; M. Finocchiaro, DO, '20; P. Dona et al., '20

« several results on basic radiative corrections and scaling of amplitudes

« dominant configurations (probably) related to solutions of classical Regge-type discrete gravity dynamics

hints that needed counterterms are of melonic type

heuristic arguments connecting (colored) simplicial and tensorial theory spaces
* ....and that'sit ...

missing:

+ more general power counting theorems

- control over theory space (and symmetries)

+ any proper RG analysis
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Extracting continuum spacetime & gravitational physics

* ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action
should be used to compute continuum geometric observables and their quantum dynamics

o /DtpDG EENCN AN Zw ngA oiSalga) — /Dg 2 S(9)
sym(T
r

F\(J) = InZ,[J] [¢] = supy (J c P — F(J)) (p) = ¢ "mean field"
i.e. evaluate (analytically? numerically?) full quantum dynamics!
(full sum over triangulations weighted by simplicial gravity path integral)
need approximations that:

+ capture collective effects
+ correspond to some coarse-graining of fundamental discrete data

« maintain (as possible) quantum nature of fundamental entities

* simplest approximation: saddle point evaluation of path integral - F[gﬁ} ~ S (qb)
mean field hydrodynamics quantum effective action ~ classical action A
TGFT condensate hydrodynamics mean field ~ condensate wavefunction
Page 27/49
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Extracting continuum spacetime & gravitational physics

Gielen, DO, Sindoni, '13; DO, Sindoni, Wilson-Ewing, '16

* simplest approximation: saddle point evaluation of path integral - F[qﬁ] ~ S ((;b)
mean field hydrodynamics quantum effective action ~ classical action A
TGFT condensate hydrodynamics mean field ~ condensate wavefunction

+ mean field hydrodynamics corresponds to working with quantum states of the type:

(simplest): TGFT field coherent state
o) := exp (6) |0)

B / d'g o(gn)dt(ar) olgrk) = olgr)

fully determined by single function: condensate wavefunction

superposition of infinitely many spin networks dofs, “gas”of tetrahedra, all associated with same state
("wavefunction homogeneity") - neglecting connectivity information
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Extracting continuum spacetime & gravitational physics

one more step before giving spatiotemporal and physical interpretation to TGFT hydrodynamics

- to apply relational strategy for the reconstruction of "quantum spacetime", need matter degrees of freedom

—— work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field
« TGFT fields including new real variable (value of scalar field) ¢(gr) — &g, x)
with consequent extension of field operators, quantum states and operators on Fock space
« corresponding TGFT action is: S=K+U+U

K = /dgrdhrfdxdx’ @91, X)K (g1, hr; (x = X)) (b1, X')

Y. Li, DO, M. Zhang, '17

U= /[dg}dxw(g: x)---2(9', x) V({g}; x)

« TGFT interaction is local in scalar field variables

* TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable

- condensate coherent state:  |0) = N, exp L[ dX/dQI a(gr,x)¢" (91, %) | |0)

N, = e-llol?/2 loli? = ] dgr dxlo(ar, )P = (o | N | o)

Pirsa: 21050026 Page 29/49



Extracting continuum spacetime & gravitational physics

. hydrodynamic Ievel: Gielen. DO. Sindoni, |13, DO} Sindoni. WiISDH—EWing, 16

only global ("spatial") geometric quantities, a single scalar field value, to be used as "relational clock"
not enough data for "local physics" ————— spatiotemporal interpretation: homogeneous cosmology

* indeed, one has: Gielen, '15

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

o (D D ~ eometries of tetrahedron} ~
(D) {g

12

{continuum spatial geometries at a point} ~

~ minisuperspace of homogeneous geometries

» general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):

, 5
/[dg’}dx'ﬁ(g, X;9,x)o (g, X") + A=V (¢)|p=s =0

o
A polynomial functional of
cosmology as QG hydrodynamics condensate wavefunction

remarks:

+ formally similar to quantum cosmology, but non-linear; no Hilbert space for cosmological wave functions

+ expect approximation corresponding to simplest condensate valid in "mesoscopic TGFT regime"
 neglected correlations among TGFT quanta, thus need weak interactions
+ interactions grow with density (modulus of condensate wavefunction), thus need smallish densities
- too small densities correspond to small numbers of TGFT quanta, i.e. no hydrodynamics
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20
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Extracting continuum spacetime & gravitational physics

+ specialize to EPRL-like TGFT models - quantum geometric data, specific form of kinetic/interaction kernels

* two more approximations:
* reduction to isotropic condensate configurations (depending on single variable j): 0 ; (X)
(~ condensate of equilateral tetrahedra)

« subdominant TGFT interactions
- consistent with use of field coherent states;
- required by focus on lattice gravity and spin foams: relevant geometric regime = perturbative one

* in order to recast it in spatiotemporal language, we need to introduce a physical relational frame
comparison to (quantum) GR can only be done in diffeo-invariant language

« homogeneous cosmological setting: one coarse-grained, dynamical dof should play role of relational clock

 special quantum states in which scalar field behaves "nicely enough” to be good clock

peaked condensate wavefunction: o¢(gr, x) = ne(9r; X — X0, 70)5(g1, X)
./‘-—'

peaking function around Xo fluctuations in (conjugate) scalar field
with a typical width given by e < 1 momentum also small if: erg > 1
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20

- for the reduced condensate wavefunction, one gets the effective dynamics:

(&;’(XO) — 2?',7?05';; (Xo) = E?E)"(XO) — O) By = —B E;g — 1

2
emg — 1

2
earrg—l

B,
Aj

where derivatives are "time derivatives" wrt to Xo

where A and B are j-dependent coefficients of series expansion of TGFT kinetic term in derivatives wrt X
(Oth and 2nd order, respectively, dominant for peaked condensate states)

note: dependence on parameters defining fundamental dynamics and chosen condensate states

* eqn can be recast in hydrodynamic form, using: 7; = p; exp[iéj] Q = conserved quantity
2
A 2
LTRSS Y — 2_pg?_j2__M (2 __1 L/}
)~ iy s =0 te-sie g (G )
2

note: there is also second conserved quantity: "energy" &; = (p/)* + —j — pip:
J

next task for "reconstructing space time" is:
recast this effective hydrodynamics in terms of relational spacetime observables

important point: observables defined in fundamental Hilbert space, but used in terms of expectation value
in condensate state, thus also spatiotemporal only in approximate, coarse-grained, collective sense
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20

* key observables for emergent cosmology (defined on fundamental TGFT Fock space):

number operator f\?:/dg; dx @' (gr, x )@(gr,x )
total universe volume V = / dx / dgr dg;¢' (91, )V (ar, 97)2(g1, x)

scalar field X = /dg; /dx x?' (g1, x)@(g1, %) should be averaged to give physical quantity

total momentum of scalar field II = 1/(19; /dx lg&*(g;,x) (;@(g;,x))l
h X

« can obtain corresponding relational observable "at given clock time", as functions of scalar
field value, by evaluating in expectation value on peaked condensate states:

relational number operator N(xo) = (J?{f)c,;m,m:r = Z/dX|0'e(9hX': XOJO)\Q = ZP?(XO)
j j

relational universe volume V (xo) = (V}J;XD,WO =) Viloj(x: x0,m0) > = Y V;02 (x0)
J J

clock (scalar field) value  (x) - Xixom ~ X0
TeiX0,T0 N(XO)
relational momentum of scalar field
A 1
D oixoimo = 3 /dxzﬁc,;f (X X0, ™0)0x 0,5 (X; X0, o) = o (-ﬁﬁz o 1) N(xo) + ) @Q;
J 0 .
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20

+ effective dynamics for volume - generalised Friedmann equations:

2
(V")2 QZJ. %pjsgn(p;)\/gj —Q?/,oer#fpf |4 - 223‘ VJ‘ [‘Sj + 2”?’9?}
3v) = 3%, Vol v > Vies

(Hubble rate small compared to the inverse

; - 2 2 4 2/ 1,2
classical approX. - bk time - small curvature - large volume) P > |5/ H5 and pj > QF/ K3

2
( v )2 (2%, Vinipisgn(p}) V' AV u3ed]
— |57 35, VP2 4 > Vie;
i.e. Friedmann eqns (in relational time) v\ N
under sufficient condition: [t; = 37G at least for some dominant | (fz‘) B 7 12rG

general lesson: "gravitational" coupling constants are emergent notions, function of fundamental parameters

+ one can compute quantum fluctuations of observables:
+ "good clock" requirement for relational dynamics puts constraints on parameters

« when those are satisfied, volume fluctuations under control for large volumes

L. Marchetti, DO, '20 thus classical (late time) dynamics is robust
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20

+ effective dynamics for volume - generalised Friedmann equations:

2
\? (25, Viessen(0))\ & — Q22 + et V" 230, Vi (& + 20307
(W) B 3%, Vipj v 25 Vie;

» behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied:
« there are solutions with singular behaviour (cosmological singularity not always resolved)
- if at least one coefficient Q or at least one "energy" coefficient is non-zero:

— j / pj (X) F# 0 VX e V = Zj V;P? quantum bounce (solving

. . R
remains positive at all times ciassical singularity)!
(with single turning point)

» quantum fluctuations remain "small" also at bounce for specific range of parameters

i . L. Marchetti, DO, '20
(specific class of solutions)
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TGFT condensate cosmology - bouncing cosmology from EPRL-like model
DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20

+ effective dynamics for volume - generalised Friedmann equations:

2
(V")2 QZJ. %pjsgn(p;)\/gj —Q?/,oer#fpf v - 223‘ VJ‘ [‘Sj i 2”?’9?}
3v) = 3%, Vol v > Vies

» behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied:
« there are solutions with singular behaviour (cosmological singularity not always resolved)
- if at least one coefficient Q or at least one "energy" coefficient is non-zero:

— j / pj (X) F# 0 VX e V = zj V;,O? quantum bounce (solving

. . R
remains positive at all times ciassical singularity)!
(with single turning point)

» quantum fluctuations remain "small" also at bounce for specific range of parameters

i . L. Marchetti, DO, '20
(specific class of solutions)

2 i~
- simple condensate: # [K] _ 4nG 4 4V;,&;, Vo = Viy 53/
5 hk 2 5 _ et JU
g;{x) =0, for all j # j, 3V 3 1%
Bl £;, < 0 quantumbounce at V,,;n = VoNpmin = M
67G
AV 1

number density cannot be too small

uantum fluctuations —(y)~ ——
¢ V oY N(x) (to be expected in hydrodynamic approx)
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The fate of cosmological singularities

in Quantum Gravity

within an "emergent spacetime scenario”
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So, what happens to the cosmological singularity in QG?

according to (current description in) TGFT condensate cosmology:
Classical cosmological singularity is replaced by “big bounce" scenario

due to a sort of “quantum gravitational/spacetime pressure”, i.e. QG modification of classical GR dynamics,
introducing an effective maximal energy density

as in LQC, but from the full QG theory!

Classical cosmological singularity is replaced by “big bounce" scenario,
in mean field restriction

more precisely:

of hydrodynamic approximation

within condensate phase

* mean field approximation obviously to be improved,

leading to different condensate hydrodynamic eqns  but maybe bouncing scenario is stable

then, yes, cosmic quantum bounce! ... if hydrodynamic approximation holds

....... if “quantum spacetime system” stays within condensate phase

- If hydrodynamic approximation breaks down: e.g because too few “atoms of space” are involved

and/or because fluctuations become too strong
disappearance of continuum spacetime
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Physical signatures of geometrogenesis

+ hypothesis: geometrogenesis will manifest itself in growth of fluctuations close to bouncing region,
leading to breakdown of hydrodynamic approximation

e ; & Vol€
K = AnG 4 V., if £, < 0 quantumbounceat Vy.in = Vo Nmin = 0 9‘
3V 3 % 32 67G

Vo = Vpi jg
: AV 1 :
quantum fluctuations ——(x) = grow as approaching the bounce
14 N(x)
th —— T [AV( )] ! G
at bounce, maximum of fluctuations: ——(Xxe R o =
4 maxr Nmm (XC) 8() (G)

+ expect hydrodynamic approximation to beak down when

- recall: G = G\TCFT)

critical value for fundamental coupling constants,

P
>

signal of (cosmological) phase transition, i.e. geometrogenesis?

Page 40/49



TGFT condensate cosmology: many other results

» deparametrized reformulation and Hamiltonian evolution
E. Wilson-Ewing, '18, S. Gielen, A. Polaczek, E. Wilson-Ewing, '19; S. Gielen, A. Polaczek, '19

matter scalar field enters GFT action just like time variable ——— deparametrization and
canonical quantization of fundamental GFT —— relational quantum Hamiltonian evolution
+ generalised effective cosmological dynamics

« cosmological perturbations
S. Gielen, DO, 117 S. Gielen, '18 F. Gerhardt, DO, E. Wilson-Ewing, ‘18 L. Marchetti, DO, to appear

formalism can be extended to inhomogeneities; scale invariant power spectrum
seems to follow in some generality (preliminary), and corrections can be computed

* cosmological effects of fundamental TGFT interactions
M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21
new cosmological terms modifying background dynamics:

QG-inflation: some choices of parameters lead to QG-generated inflationary phase in early universe
(phenomenologically ok?)

QG-dark energy: other (less restrictive) choices produce QG-generated late-time acceleration,
matching viable dark energy models

general lesson: in emergent spacetime scenarios, large-scale properties of universe
could be of direct QG origin, limits of validity of effective field theory intuition and results

.....................
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21

« mean field relational dynamics for (isotropic) condensate wavefunction can be extracted from effective action:

<J‘M J> _ 535; %) =0 §(a,8) = qus (Zaja¢aj + V(0,5 ))

51

y 2\ 2
"phenomenological" approach - simple potential: | V(0,7) = — Z (mﬂ”ﬂz J| g+ == 04 |03| )
j J

assuming: 2 < n; < n} \,uj\ < ‘)\j| < m2

]_ 2 kL 2 2 n,".
- resulting equation for condensate density | 05(¢) = = \/QE — Q3 +mlp} — o Jpjﬁ — pip"it?
i)

conserved quantities

« turn this into equation for volume (function of relational time)

in terms equation of state for "emergent matter" component of universe (of QG origin): | w = 3 —

w = p/p
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21
« mean field relational dynamics for (isotropic) condensate wavefunction can be extracted from effective action:

<U‘M J>=$=U S(o,0) = /dqﬁ (ZJJG¢JJ+V o,0 ))

51

y 2\ 2
"phenomenological" approach - simple potential: | V(0,7) = — Z (m,f|oj|2 J| g+ == 04 |03| )
j J

assuming: 2 < n; < n} \,uj\ < ‘)\j| < m2

]_ 2 T 2 2 n,".
- resulting equation for condensate density | 05(¢) = = \/QE — Q5 +mip} — > Py = it
J

conserved quantities

« turn this into equation for volume (function of relational time)

in terms equation of state for "emergent matter" component of universe (of QG origin): | w = 3 —

w = p/p

* now we can analyse what happens in different regimes, due to the presence of interactions
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21

"phenomenological" approach - simple potential:  V(¢,5) = — Z (m§|0j|2 2)\3| ;™ + 215 3 os | )

assuming: 2 < n; <) |u| < || < m? J &
: ; , VAR i
+ effective cosmological dynamics |w =3 — (V’)2 for "emergent matter" component (of QG origin)

L]

free theory:  short-lived acceleration after bounce, then Friedman dynamics

general:

« for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
+ as the universe expands after bounce, interactions become more relevant, until they drive evolution

beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

« if only single mode contributes: M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

L T3Q7HAEP + mipt 4 (1) A + (1 o) ™ 2<ny <my

_Q2 + 2E,0 _|_m2 - %Apn-P? - F”pn '4+2

1] < [N < m?
accelerated phase can last long, depending on parameters QG-inflation

however, either expansion never ends, in which case it is not phenomenologically viable

and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic
universe) - no Friedmann phase - semiclassical physics?
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21

"phenomenological" approach - simple potential:  V(¢,5) = — Z (m;;lgjlg 2)\3| ;™ + 215 3 os | )

assuming: 2 < n; <) |u| < || <« m? J &
: ; , VAR i
+ effective cosmological dynamics |w =3 — (V’)2 for "emergent matter" component (of QG origin)

L]

free theory:  short-lived acceleration after bounce, then Friedman dynamics

general:

« for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
+ as the universe expands after bounce, interactions become more relevant, until they drive evolution

» when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

« if more than one mode contributes: richer and observationally viable phenomenology

interacting theory: nice Friedmann-like expansion after cosmic bounce

depending on "

parameters phantom-like accelerated phase at later times - QG-dark energy

X. Pang, DO, '21
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21

"phenomenological" approach - simple potential:  V(¢,5) = — Z (m§|0j|2 2)\3| ;™ + 215 3 os | )

assuming: 2 < n; <) |u| < || < m? J &
: ; , VAR i
+ effective cosmological dynamics |w =3 — (V’)2 for "emergent matter" component (of QG origin)

L]

free theory:  short-lived acceleration after bounce, then Friedman dynamics

general:

« for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
+ as the universe expands after bounce, interactions become more relevant, until they drive evolution

» when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

« if more than one mode contributes: richer and observationally viable phenomenology

interacting theory: nice Friedmann-like expansion after cosmic bounce

depending on *

parameters phantom-like accelerated phase at later times - QG-dark energy

general lesson: in emergent spacetime scenarios, large-scale properties of universe
could be of direct QG origin (limited validity of effective field theory intuition and results)

X. Pang, DO, '21
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Effects of TGFT interactions on cosmological dynamics

2VV”
- effective cosmological dynamics| w =3 — —— for "emergent matter" component (of QG origin):

(V)2

- if more than one mode contributes: richer and observationally viable phenomenology
= assume both couplings are very small: interactions only relevant once universe is very large
——— very short acceleration after bounce, followed by nice Friedmann expansion

« then interactions become relevant - for two modes j1 and j2

+ only one interaction for each mode (n; = ny = n): [—o, <é,_
1.5 | Py
Mo r'JE'x
maximum is reached from below for 1
* on that: w < 2— — .
R e e - 2 large volumes (one mode dominates) 05
 in particular n =6 0
phantom divide w = -1 can be crossed, then G
approached from below at large volume -1
> i i = in 15 L . n L . L L n |
effective phantom field - QG-dark energy TR L e e

InV
* however, no Big Rip singularity occurs, because the energy density of the effective phantom field
remains finite at large volumes, approaching a constant value

b b Pyod

w=-1-3  b=4Vaps(d1ec) Py = Pyo€™V X pyo — %
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Effects of TGFT interactions on cosmological dynamics

WV
- effective cosmological dynamics | w = 3 — W for "emergent matter" component (of QG origin):

- if more than one mode contributes: richer and observationally viable phenomenology
= assume both couplings are very small: interactions only relevant once universe is very large
— very short acceleration after bounce, followed by nice Friedmann expansion

« then interactions become relevant - for two modes j1 and j2

+ only one interaction for each mode (n; = ny = n): e by < by
) 0= Do,
" maximum is reached from below for 15
* on that: w £ 2— = ; -
el bl - 2 large volumes (one mode dominates) 05
* inparticular n =6 0|
phantom divide w = -1 can be crossed, then WA
approached from below at large volume -1
» effective phantom field - QG-dark energy e
0 2 4 6 8 10 12 14 16 18

InV
* however, no Big Rip singularity occurs, because the energy density of the effective phantom field
remains finite at large volumes, approaching a constant value

b b pyob ——» asymptotic De Sitter universe

w=-1-3  b=4Vm(1) Py =Pyoe™V X pyo—

+ QG-produced version of semi-classical model in B. Mcinnes, '01
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Effects of TGFT interactions on cosmological dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16 X. Pang, DO, '21

"phenomenological" approach - simple potential:  V(¢,5) = — Z (m§|0j|2 2)\3| ;™ + 215 3 os | )

assuming: 2 < n; <) |u| < || < m? J &
: ; , PATA i
+ effective cosmological dynamics |w =3 — (V’)2 for "emergent matter" component (of QG origin)

L]

free theory:  short-lived acceleration after bounce, then Friedman dynamics

general:

« for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
+ as the universe expands after bounce, interactions become more relevant, until they drive evolution

» when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

« if more than one mode contributes: richer and observationally viable phenomenology

interacting theory: nice Friedmann-like expansion after cosmic bounce

depending on *

parameters phantom-like accelerated phase at later times - QG-dark energy

general lesson: in emergent spacetime scenarios, large-scale properties of universe
could be of direct QG origin (limited validity of effective field theory intuition and results)

X. Pang, DO, '21
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