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Abstract: With the race for quantum computers in full swing, researchers became interested in the question of what happens if we replace a
supervised machine learning model with a quantum circuit. While such "supervised quantum models’ are sometimes called "gquantum neural
networks", their mathematical structure reveals that they are in fact kernel methods with kernels that measure the distance between data embedded
into quantum states. Thistalk gives an informal overview of the link, and discusses the far-reaching consequences for quantum machine learning.
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Summary of the talk

In supervised machine learning, we train models f(x) with data so that the
model captures the relation between inputs x and target outputs y.

A popular approach in quantum machine learning is to use variational circuits
(that somehow encode inputs x) as models f(x).

These “circuit learners” are linear models f(z) = (w, ¢(x))r in some
high-dimensional feature space F.

Machine learning knows a lot about such models, which can help us immensely
to analyse circuit learners.

For example, it tells us that variational training is usually a bad idea, and that
the power of quantum computing has to lie in the data encoding strategy.
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Further reading.

Rebentrost, Mohseni and Lloyd (2013) Quantum support vector machine for big data
classification, arXiv:1307.0471.

Chatterjee, Yu (2013) Generalized Coherent States, Reproducing Kernels, and
Quantum Support Vector Machines, arXiv:1612.03713.

Schuld, Killoran (2018) Quantum machine learning in feature Hilbert spaces,
arXiv:1803.07128.

Havlicek et al. (2018) Supervised learning with quantum enhanced feature spaces,
arXiv:1804.11326.

Liu, Arunachalam, Temme (2020) A rigorous and robust quantum speed-up in
supervised machine learning, arXiv:2010.02174.

» Huang et al. (2020) Power of data in quantum machine learning, arXiv:2011.01938.

» Schuld (2021) Quantum machine learning models are kernel methods,
arXiv:2101.1100.
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The problem of supervised learning.
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Find the model 5 Find the model
that minimises the cost ; that minimises the cost

on all data. : on a training set.
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The problem of supervised learning.

Given some data samples (z!, y!)...(z™, y™) of inputs z € X and their labels

y € Y, a model family fy(x) and a loss L(f(x),y), find the parameters 6 that solve

1 M
min - L(fo(x), y)+g(fo)-
m=1

This is called (regularised) empirical risk minimisation.
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The problem of supervised learning.
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The problem of supervised learning.
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We can use quantum circuits as models.
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We can use quantum circuits as models.
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We can use quantum circuits as models.
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We can use quantum circuits as models.
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These circuit learners are linear models.

PHYSICAL CIRCUIT
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These circuit learners are linear models.

PHYSICAL CIRCUIT

0)—

| S(=) | |W(@O)| M
0) — — LK

ofeIoAr +

; R measure-
processing ment

’f 4
I

i

MATHEMATICAL DESCRIPTION

tr{ M W) | gx) }

Pirsa: 21050018 Page 14/25



These circuit learners are linear models.

PHYSICAL CIRCUIT
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These circuit learners are linear models.

flz) = tr{M(0) p(x)} = (w, ¢(x)) 7

k

Note: circuit learners are linear in M, not in 6.
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Entering the world of kernel theory.

> SVM (general definition, i.e., Christmann & Steinwart): f(x) = (v, ¢(2))r.
» Computations in feature space through kernel «(z, 2') = (¢(2'), d(z)) .

» Representer theorem: Model that minimises regularised empirical risk can be

M
= E Oy Bl BT
m=1

written as

» We can find this model by solving the problem

M
1
Tl 7
Hgan:lL . fel® +Z%QJ” Tt x
m=

1,7=1
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Supervised circuit learners are support vector machines.

» Quantum model: f(x)= (Mp), = tr{p(x)M(6)}.
» Computations in feature space through kernel x(x, 2') = tr{p(x)p(z’)}.

» Representer theorem: Model that minimises regularised empirical risk can be
written as

M
= ) amtr{p(z')p(z)}.
m=1

» We can find this model by solving the problem

M
min - >" L™, fala ™)+ 3 avagtr{p(a)o@)}
m=1

1,7=1
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The proofs use Reproducing Kernel Hilbert Spaces.
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The proofs use Reproducing Kernel Hilbert Spaces.
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What does this mean for variational training?

svm = SVC(kernel=kernel matrix).fit(X_train, y_train)
svm.predict (X_test)

/ space of quantum models \

e

6

variational training

kernel-based training
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What does this mean for variational training?

le6
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Kernel methods: O(n?, ), Var circuits: O(ngatafparams); NNs: O(ngata)

https://pennylane.ai/qml/demos/tutorial_kernel_based_training.html
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How do quantum kernels look like?

Javier Vidal & Dirk Theis 1901.11434; Schuld, Sweke & Meyer 2008.08605
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How do quantum kernels look like?

Let X = RY and S(x) be a quantum circuit that encodes the data inputs
x = (z1,...,xN) € X into a n-qubit quantum state S(x)|0) = |¢(x)) via gates
of the form e~ i for i = 1,..., N, where wlog G is a d < 2"-dimensional
diagonal operator with spectrum Aq,..., \q. Between such data-encoding gates,
and before and after the entire encoding circuit, arbitrary unitary evolutions
W o WWHD can be applied. The quantum kernel s(x,x’) can be written as

I . . f
HL(X,X) _ § : 6zsxeztx Cst

s,tef

L

where @ C R, and ¢t € C. For every s,t € Q we have —s,—t €
and cst = ¢ 4, which guarantees that the quantum kernel is real-valued.
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Thank you!

www.pennylane.ai
www.xanadu.ai

@XanaduAl
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