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Abstract: Gravitational wave observations are beginning to reveal the nature of & nbsp;the dark side of our universe. The Advanced LIGO and Virgo
detectors& nbsp;have observed dozens of binary black hole mergers during the recent&nbsp;third observing run and, with planned sensitivity
improvements, expect&nbsp;to observe significantly more binary black hole mergers in future& nbsp;observing runs. The combination of the
increased number of detections& nbsp; and the sheer volume of data associated with each detection provides a& nbsp;significant data analysis
challenge. In recent years, various machine& nbsp;learning approaches such as convolutional neural networks have been& nbsp;explored as a basis
for rapid analyses for gravitational wave data. This& nbsp;seminar will give a brief introduction to current transient& nbsp;gravitational wave data
analysis methodology and highlight novel& nbsp;applications of machine learning for rapid detection of binary black& nbsp;holes and rapid
inference of their astrophysical properties. The use of & nbsp;generative machine learning algorithms for transient gravitational wave& nbsp;signal
generation will also be discussed.
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Enhancing transient gravitational
wave analyses with machine
learning

Ik Siong Heng
with plenty of input from Chris Messenger, Jordan McGinn

and Hunter Gabbard
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e Brief introduction

* Neural networks and autoencoders

* Rapid parameter estimation with conditional variational
autoencoders (VItamin)

* Generative adversarial networks for Burst waveform generation

* Summary

A University
& of Glasgow

Pirsa: 21050017 Page 3/29



Institute for Gravitational Research

Academics

£ A

,}@Q‘.
Prof. Sheila Prof. James Prof. Ken Strain Prof. Graham Prof. Martin
Rowan Hough Woan Hendry

£

Prof. Giles Praof. Ik Siong Prof. Harry Dr Christopher Dr Iain Martin
Hammond Heng Ward Berry

The Institute for Gravitational Research (IGR)
consist of over 80 members: 13 academic staff,
~30 postdocs/research fellows, ~40 PhD students
plus support staff

Dr Chris Dr John Veitch Dr Eric Oclker
Messenger
& University
o, of Glasgow

Pirsa: 21050017 Page 4/29



Pirsa: 21050017

Gravitational wave S|gna| types

modelled i | unmoelled

| Compact Binary

Coalescence

short

Continuous Stochastic

abl=" -y ""1?!{?‘;‘
ih PN
i it 5

i

: - SERVeISIty
@ g of Glasgoxz’

Page 5/29



Very brief gravitational wave intro

. Grawtatlonal waves are rlpples in spaee t|me that travel at the speed of
light

* They are generated by time varying mass distributions

* They have 2 polarisation states and affect the relative positions of test
partICIeS Hanford,Washington (H1) Livingston, Louisiana ( Ll}

10

* We will focus on signals generated w M‘V%“ = {,J IL-“A ||||ﬂv|hW “‘W\Wmmwf“‘*

from compact binary coalescences
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Detectmg Compact bmary coalesences

For matched flltenng, we requnre a Iot of S|gnal
GW Channel templates (template bank) to cover the search

+ simulated mspnral parameter space for possible signals and
p ' minimise loss of SNR.

h(t)
The search can be performed relatively quickly

usmg a computlng cluster.

s(t) Coalescence Time
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Bayesian inference & parameter estimation

. Astrophysucal properhes of deteoted
coalescenes are inferred with a
Bayesian framework

LIGO-Virgo Collaboration, PRL, 118, 22 (2017)

— Average
—— Effective Precession

. , —— Full Precession
likelihood prior

posterior

_ p(Y[X, I) x p(X|I)

= GW170104
g

* The likelihood calculation is costly 10
for a high-dimensional system so
(quasi-)stochastic algorithms are
used to efficiently evaluate the
likelihood

- Markov Chain Monte Carlo (MCMC) 30
- nested sampling my (M)

p(parameter|data, I) < p(data|parameter, I) x p(parameter|I)

A University
& of Glasgow

Pirsa: 21050017 Page 8/29



Example detections

GWTC-2 plot v1.0 LIGO-Virgo, Frank
Elavsky, Aaron Geller, Northwestern

EM Neutron Stars
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 Gravitational wave parameter estimation is slow

* Typical analyses (for O3) have taken between 6 hours and 5 days

* This is for full Bayesian PE and not to be compared with the rapid
sky only tools [Singer & Price PRD, 93, 2 (2016)]

* There are other overheads in getting analyses running

» Rapid parameter estimation is important for multi-messenger
astrophysics and also for computational efficiency

* Use machine learning to speed up parameter estimation

- A University
) '_i-: qu]asgoxz’
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Neural network basics

i

* |n a neural network, each neuron consists of an activation function where the
input to the function is the combined outputs of neurons from the previous layer.

- eg activation functions: sigmoid, rectified linear unit (ReLU) and leaky RelLU

» A typical neural network data set is split into 3 data sets: training, validation and

testing

- training: weights & biases; validation: hyperparameters (eg. learning rate);
testing: performance evaluation (eg. % of testing data labelled correctly)

* A loss function measures how close predicted values are to the truth

Hidden layers

neuron

QOutput layers

Input layer
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Neural networks for detection

» Convolutional neural networks R ]
(CNN) have been shown to all— aranit

. y == FAP = 0.001
match matched filtering for

binary black hole signals

- many papers on this topic
including Gabbard et al. (2018)

Convolutional aspect is mainly for
data reduction, by combining il , |
multiple data points together o

: t al PRL 120, 141103 (2018)
- eg. reduce 16x16 image to 4x4 Hehbargata 0, (2018)

In these cases, the CNNs are
deployed as classifiers; predicting
whether the data contains noise only
or noise+signal

e -

True alarm probability

Strain (10-%2)

o m & A NSO N EO D
Strain (10-2)

CNNs have also been show to work
on supernova waveforms

0 01 0.2 0.3 0.4 -0.01 0.00 0.01 0.02 003 0.04 0.05
- eg. Chan et al. (2020) Time(s) Timets)
Chan et al. Phys. Rev. D 102, 043022 (2020)
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Basic autoencoder

* Autoencoders combine two neuron 'S
networks in sequence

* Encoder maps the input into a (reduced) S
abstract “latent” representation

* The Decoder network converts the latent
representation into an output

* The loss function is minimised when the Z=12,006, ..12,-04] }- 'tank reprasentation of

output best matches the input
}m

ii,: University
& of Glasgow

https://ijldykeman.github.io/ml/2016/12/21/cvae.html
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Variational autoencoder

* Encoder predicts the mean and covariance of 'S
a multi-dimensional Gaussian in the latent

space
* We then randomly sample from that o S

distribution

* The Decoder network converts the (random)
latent representation into an output K3 2D representation

for the diagram

* The loss function is minimised when the
output best matches the input, and...

* there's an extra loss component that keeps el
the latent space Gaussian averaged over all
inputs

https://ijldykeman.github.io/ml/2016/12/21/cvae.html

: A University
of Glasgow
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Variational autoencoder

* So an image of a “3" gets mapped to a
particular region of the latent space.

&2

* The inherent spread in the distribution
represents the acceptable variation in that
£

* A “6" lives elsewhere in the latent space,

probably close to the “8"s, and “5"s since
they share similar characteristics.

* Other dimensions of the space may encode
things like stroke width, and angle, etc...

https://ijldykeman.github.io/ml/2016/12/21/cvae.html
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Variational autoencoder

S = - —_—— ot == e

* The Kullback-Leibler divergence (KL) loss keeps the ensemble of
training data mapped to a zero-mean, unit-variance Gaussian.

* So you can then sample from it after training to generate new
Images

https://ijldykeman.github.io/ml/2016/12/21/cvae.html
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Conditional Variational Autoencoder (CVAE)

] = 2 = — e e m— e ————

 Passing labels allows you specify properties of the output

latent space latent space latent space

https://ijldykeman.github.io/ml/2016/12/21/cvae.html
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Conditional Variational Autoencoder (CVAE)

* You should think of the encoder network in terms of probability
distributions.

i

* For this basic CVAE the encoder is modelling the distribution
p(zlz,y)

* The decoder is modelling the function x is the image
y is the label

z is the latent space location
f(y, 2)

* and the loss function is (something like)

= ((f(Z, y) — $)2>p(:r,y,z) ¥ ﬁKL (p(z}a:, y)|G(0& 1))

https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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Vitamin

* We develop a rapid inference Parameter name symbol min units
method (VItamin) based on massl mi 35 solar masses

a

mass 2 ma 35 solar masses

conditional variational luminosity distance  dr 1 Gpe

time of coalescence to 0.65 ; seconds

autoenco d ers phase at coalescence o 0 radians

right ascension o 0 radians

Vitamin is trained on whitened declination 5 —m/2 radians
BBH time series in Gaussian ity L4 s
noise and the true parameter spins -

values with the aim of producing 15 parameters in total

samples from the posterior

distributions of the parameters

Note that posteriors are NOT h’*l“LV IJ‘HVMN‘W "ﬂv r\J“ | ”WVI#

used in training

3- detector network
|||| || 2 |I 1 ||I!i

time (seconds)
Gabbard et al, arXiv 1909.06296 (2019)
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Vitamin

* We develop a rapid inference Parameter name symbol min units
method (VItamin) based on massl mi 35 solar masses

a

mass 2 ma 35 solar masses

conditional variational luminosity distance  dr 1 Gpe

time of coalescence to 0.65 ; seconds

autoenco d ers phase at coalescence o 0 radians

right ascension o 0 radians

Vitamin is trained on whitened declination § —n/2 radians
- e : inclinati 0 &

BBH time series in Gaussian ;;gg;;g;n ; . e

noise and the true parameter spins -

values with the aim of producing 15 parameters in total

samples from the posterior

distributions of the parameters IH'
Note that posteriors are NOT WI‘\MN‘ ”WA‘N'V" \iﬂ \JJ \ Jli nt',‘!'fhk
used in training

3- detector network
|||| || 2 |I 1 ||I!i

time (seconds)
Gabbard et al, arXiv 1909.06296 (2019)
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Vitamin

- . T e m— e ————

* The data we measure is a noisy
time series (y) consisting of a Gruej poametors.  deth
deterministic signal plus noise

* The signal is defined by the
parameters (x)

* We want to obtain the posterior
on the signal parameters

p(z|y)

* But, instead of calculating the
posterior directly, we train an
approximate function that can
generate samples drawn from | i
the posterior rapidly ’ l

1 & ($ | y) Xsamp

Gabbard et al, arXiv 1909.06296 (2019)
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Vitamin loss function

* We train the network with the aim of minimising t t N
the cross entropy between the true posterior and 725%™ %7
the approximation

H(y) = —/ dz p(z|y) log r(z|y).

* |t can be shown that

r(zly) > ]q(z\x,y) log (T(mﬁ,’z?ﬂzgjlg})) -

* Combining these two, and changing the integral
to a sum (since we have discrete data samples)

we find

® O

1 5 (%ily;)
H== ﬁ ( ( — ) =Tr IOgT(.’L'leJ,ZJ)) z~p(x)
a(z;lz;, y5) - ,
J y~p(ylz) Gabbard et al, arXiv 1909.06296 (2019)

gl z|,
q(=|z.y) s U]IIVLI'SIII}
-i-’ of Glasgow
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Vitamin results
* Needs lots of training data in
the form of examples of noisy N —— -

signals (y) plus the true signal
parameters (x)

 Need a GPU and still takes
~days

* We do not need any costly

pre-computed posteriors for
training

* The total cost/loss is
minimised at the expense of
increased KL

Updated version of Gabbard et al, arXiv 1909.06296 (2019)

-5-." University
& of Glasgow
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Vitamin posteriors

« We run a number of very) costly analys;es with
existing sampling approaches for comparison

* Results do not agree perfectly and there is still
work to do to fine tune the networks

.. * Note that existing samplers also disagree in some
'\ circumstances

irsa: 21050017 Page 24/29



Vitamin speed

ey

. The primary diﬂ:erence iS that the Gabbard et al, arXiv 1909.06296 (2019)
CVAE is pre-trained so that all
cost is up-front e ek

* We get a ~6 order of magnitude sampler _ Tun time (seconds) o T vitarin

min max median TX

speed up In our test cases Dynesty® [15] 11795 29838 19400 ®° 5.2 x 10" °
emcee [16] 18838 69272 32070 3.1 x 107°

* Can now generate 104 posterior ptemcee [17] 17124 37446 24372 4.1 x 107°
CPNest [14] 9943 53315 26202 3.8x 107°

samples in O(1) sec VItamin® 1x 107 1

2 The benchmark samplers all produced O(10000) samples

. Tl'al nl ng St| ” takeS O(daYS) but dependent on the default sampling parameters used.

G b We note that there are a growing number of specialised
needs to Only be done once techniques [31-33] designed to speed up traditional sampling
algorithms that could be used to reduce the runtimes quoted
here by O(1 — 2) orders of magnitude.
¢ For the VItamin sampler 10000 samples are produced as
representative of a typical posterior. The run time is
independent of the signal content in the data and is therefore
constant for all test cases.

Representative but now
outdated

University
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Normalising Flows

* Another Likelihood-free
approach that can also obtain
Bayesian posteriors is
Normalising Flows [Green et
al, PRD 102, 10 (2020)]

* These are generative models
which produce tractable
distributions where both
sampling and density |
evaluation can be efficient and
exact

px(2) = pz(f(2)) |aet (22|

https://blog.evjang.com/2018/01/nf2.html
A University

&7 of Glasgow
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Image generaﬂon

* Recent works have been
incredibly successful in
Image generation.

* With conditioning, it is also
possible to control the
combination of features from
each class.

- eg. If GAN is trained on

images of cats and pizza, it
can create a pizza-cat.

hitps://thispersondoesnotexist.com

A Universit
‘_Lt of (:l'lsgoxz

Pirsa: 21050017 Page 27/29



Charaoterrsmg waveform generaﬂons

. A baSIC search plpellne using a CNN in order to compare the
sensitivity of such a search using different GAN generated
waveforms in Gaussian noise

- 3 different CNN networks; one trained on Vertex generations, another on
Simplex generations and the last on Uniform generations

* We are interested in the relative sensitivity as a function of the types
of waveforms used for training the network.

* Set a threshold corresponding to a false alarm probability of 10-3

* Reminder: Vertex generations correspond to the standard set of
waveforms used in Burst searches

Page 37 of 49
https://arxiv.org/abs/2103.01641
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Summary

- 2 S s T e ——

https://xkcd-excuse.com

* Machine learning can provide a direct THE #1 DATA SCIENTIST EXCUSE

replacement for existing Bayesian parameter | ffqg;";?;*fgﬁt‘;ﬁm
g L' TRAINI
estimation i

- VItamin is applicable to general Bayesian inference] ( HEV: GETBAK
problems _

* This will enable realtime multi messenger
astronomy and also the scope for pre-merger
detections.

* There are still many challenges, e.g., real detector noise, longer
duration signals, etc...

* Machine learning can also be used to generate complex waveform
morphologies, beyond what is easily described analytically.

* Generalised Burst signals will hopefully improve search efficiency
across the broad generic transient parameter space.

* Other applications: optimising searches, waveform reconstruction,
enhancing gravitational wave detector stationarity and robustness. ..
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