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Abstract: Since their first discovery in 2015, gravitational-wave observations yielded several "surprises." The LIGO and Virgo observatories
detected more and heavier black holes than anticipated; the first object in the lower mass gap was found; and L1IGO announced the discovery of a
particularly heavy black hole that could have not come from stellar core collapse. The surprises point to the possibility that some of LIGO/Virgo's
black hole mergers occurred in the dense accretion disks of active galactic nuclel (AGNs). AGNs act like black hole assembly lines, resulting in
multiple consecutive mergers that create heavier and faster-spinning black holes. | will discuss what we currently know about AGN-assisted mergers
and which of LIGO/Virgo's events are suspects. | will finally discuss the prospects of multi-messenger observations from AGN assisted mergers.

Zoom Link: https://pitp.zoom.us/j/93121526365?7pwd=c1V CTjBEZnIXY k5HV TFObVBadHIxQT09
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Imre Bartos

Gravitational-wave detections

Advanced LIGO completed in 2015 — discovery within hours!

All information about two black holes (masses, spins,
distance, etc.) are encoded in the gravitational waveform.
Each LIGO/Virgo observing run gave us a new source type!

* O1: binary black hole merger

* (02: binary neutron star merger

* 03: black hole + “???” merger

So far the astrophysical mechanism that produced these
mergers was not clear.
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LIGO/Virgo discoveries

ImreBartos =

03 ended in March 2020

3+7+57(?) GW discoveries _
(special events are published first)

Many more black hole mergers

New neutron star merger, no
counterpart ®

Object in the lower mass gap

Black hole in the upper mass gap
(beyond what stars can produce) EMNeitran Slars

Updated 2020-09-02
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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gas-capture in AGN disks
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isolated stellar binaries binary black hole .

primordial black holes
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Possible origins of binary black holes

Imre Bartos
L HHE

* The biggest stars (> 30M(;) reside in binaries.
* When both massive stars die, they become black holes.

-> Binary black hole

>

isolated stellar binaries
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* The centers of galaxies harbor: \
* One supermassive black hole

e ~ 10% stellar-mass black holes

Stellar-mass black holes can randomly
get close to each other to get
gravitationally captured.

- Binary black hole /
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/ * Density fluctuations in the Early
Universe

* - primordial black holes

* Could have distinct properties from
black holes from stars.

\ * Could contribute to dark matter.

primordial black holes
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gas-capture in AGN disks
1. Black holes align their orbit with disk ® ®

2. Migrate inward in disk ® o9y ® o0

3. Gas capture - form binaries o® »

4. Rapidly merge due to dynamical friction
+ binary-single interactions

5. Repeat (hierarchical mergers)

Observational signatures: Ed » » ®
* Heavier black holes ® ° ® ®
* High spin ® ®

* Multi-messenger counterpart
* Eccentricity
* Correlation with AGN locations

Bartos+ ApJ 2017, Stone+ MNRAS 2017,

Yang+ PRL 2019, McKernan+ ApJ Lett 2019,
Tagawa+ ApJ 2020, Secunda+ ApJ 2019
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Why are black holes in AGNs heavier?

Imre Bartos

Mass segregation

Heavier objects in galactic center

migrate inward, lighter ones move out.
(O’Leary+ 2009)
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Hierarchical mergers.

Multiple black holes can migrate to same
place and merge consecutively.
° (Yang+ PRL 2019)
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Accretion
Black holes (and neutron stars) accrete gas
inside the AGN disk.

(Yang+ Apl Lett 2019)
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Higher spin
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Both mergers and accretion can increase spin.
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A black hole merger can be described by ~ 15 parameters (masses,
spins, location, orientation, eccentricity).

¢ The more information we have the better we can establish the
origin of binary mergers.
Ideally, we should model all these and compare to observations.

* Not all information is equally accessible.

* It is not just reconstruction uncertainties.
Some parameters simply make GW emission
less detectable:

» Antialigned spin (weaker GW)
» Precessing spin (unusual waveform)

» Orbital eccentricity (unusual waveform) Location,
orbital

eccentricity

Ranking of how well these
can be extracted from GWs.
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Probing the origin of black hole mergers

We can look at:
* Populations (where different models make different predictions on distributions)
v’ e.g. mass, spin distribution
» Special events (some parameter rules out some of the models)
v’ unusual mass / spin
v  orbital eccentricity
* Smoking guns (observationally unique even if the event itself is not)
* host galaxy properties
* Electromagnetic counterpart
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1. Mass distribution:

Single power law with max and min cutoff doesn’t work.

Extends to high masses

Possibly overabundance at ~ 40M,, or two components (model-based possibilities).
Beyond this, we don’t really have enough information to tell.

General distribution not conclusive regarding origin (other than extreme events).
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Expected mass distribution from AGNs?

Imre Bartos |

— AGN
Tagawa+ 2020
= 10° “power law peak”
= "broken power law"
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* Mass distribution at the highest masses consistent with AGN origin.
* 25% of detected events may be from AGNs.
(smaller fraction of merger rate)

Gayathri+ 2021 (2104.10253)
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T
Origin of GW190521

Parameter

Primary mass 8512 M,
Secondary mass 6611s Mg
* M; > 65Mg: intension with stellar binary origin (although Primary spin magnitude 0.69“_?’25
some uncertainties remain; Belczynski 2020, Costa+ 2020, Secondary spin magnitude 0.731?.33

Farmer+ 2020). 55 o,
Total mass 15017 M
* Misaligned spin w.r.t. orbit: also difficult to explain with Mass ratio (m,/m; < 1) 0.79405
stellar binaries where spin should be parallel with binary Effective inspiral spin parameter (y.;) 0.084:8.%
orbit. Expected in dynamical capture. ) ) ) il
Effective precession spin parameter (y,) 0.687)37
* High spin: this is the highest so far detected. One possibility: Luminosity Distance 5.33_‘2 Gpc
increased through previous mergers or accretion. Redshift 0.8218'.%‘?

: : 128

Based on these, possible scenario is that these BHs are the Tl pss 14216 Mo
remnants of previous mergers. In particular AGNs are an Final spin O o
interesting possibility. What could prove this further? P (m; <65 M) 0.32%
, . . +0.06
. Electromagnetic counterpart (~only in AGNs) log,o Bayes factor for orbital precession 1.062 06
log,, Bayes factor for nonzero spins go2
* Orbital eccentricity (dynamical encounter origin) log,o Bayes factor for higher harmonics —0.38130¢
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e
Eccentric GW190521°7

1051

* Orbital eccentricity is expected only if the binary formed only recently 100
(dynamical encounters or gas-capture in AGNs) or near supermassive black £
holes (in galactic centers). g

% 95
I}

* High eccentricity has been impossible to identify due to lack of sufficient
number of appropriate templates.

851

¢ Complicated waveforms so analytical solutions are difficult.

80+

*  We carried out 300+ numerical relativity simulations, equivalent to
~30,000 templates (typical LIGO/Virgo bank is ~200,000).

* We find that best fit is a highly eccentric binary with e = 0.7.
(Gayathri+ 2009.05461 2020).

* No eccentric binary has been identified before.
* AGNSs: likely best sites for high eccentricity mergers.

2D interactions lead to high eccentricity much more often than 3D
interactions. (Samsing+ 2010.09765 2020).
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The lower mass gap (GW190814)

» Compact object in “lower mass gap” (2. 6M ;)
* Stars are not expected die as 2 — 5M; compact objects.

» So there was either
* Alot of accretion (e.g. in AGNs)
* Previous merger of neutron stars

* 2.6M = final mass of a neutron star merger
* Accretion possible but not necessary

* Heavy companion (23M )
* Very asymmetric masses not expected from stellar binaries
* > more likely the two objects met in a chance encounter
in a dense stellar environment.
* Possible explanation:
* Hierarchical merger in a dense stellar environment

* AGNs: up to few % of detected mergers will have object in
lower mass gap (Gayathri+ 2020).

* Triple system (Lu+ 2020)

Pirsa: 21050012
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Primary mass m; /M, 23244,
Secondary mass m,/M., 2.59108
Effective inspiral spin parameter s —0.002+3.5%0
Upper bound on effective precession parameter x,, 0.07
Luminosity distance Dy /Mpc 241141

LIGO+Virgo ApJ 2020 |4 i 102
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What’s next (short-term)

Order of magnitude detection rate
improvement from already funded
upgrades in next 5 years.

- >1000 discoveries soon...

- Some events will be detected with

very high SNR -> “precision gravity”

LIGO will deliver major breakthroughs in
the next 5 years.
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distance reach for neutron star mergers
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* We have a lot more information now than after 01+02.

* |tis becoming difficult to explain observations with the standard
isolated binary paradigm:

~ 1/3 of events have negative x¢sys.

Many binaries with nonzero yp,.

Objects in lower and upper mass gap.

Event with mass ratio ¢ < 1.

Highly eccentric merger.

EM counterpart of a BBH?

NENENR R NRN

» Differentiating between dynamical / AGN channels is more difficult:
v Large model uncertainties remain making population comparisons hard.
v How much are hierarchical mergers in globular clusters limited by small
escape velocities?
v High eccentricity favors AGN origin
v" EM counterpart if true would be smoking gun.

* | am looking forward to:
v Are there even more massive BHs than GW1905217
v Are there more eccentric binaries?
v’ Are there mass-gap events with masses different from 2 x NS?
v Can we localize the host galaxy of some BBHs?

UNIVERSITY ‘: bl
Perimeter Institute | 05.13.2021 UF FLORII)LQ ENSTR(5)) e i Sloa
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