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Abst_ract: The model of Causal Dynamical Triangulations (CDT) is a background-independent and diffeomorphism-invariant approach to quantum
gravity,

which provides a lattice regularization of the formal gravitational path integral. The framework does not involve any coordinate system and employs
only geometric invariants. For a Universe with toroidal spatial topology, we can introduce coordinates using classical scalar fields with periodic
boundary conditions with ajump. The field configurations reveal pictures of cosmic voids and filaments surprisingly similar to the ones observed in
the present-day Universe. | will discuss the impact of dynamical matter fields on the geometry of atypical quantum universe in the four-dimensional
CDT model& nbsp;and explain several observed phenomena. In particular, a phase transition is triggered by the change of the scalar field jump
amplitude. This discovery may have important consequences for quantum universes with non-trivial topology since the phase transition can change
the topology to a simply connected one.

& nbsp;
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Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations is a background independent and

diffeomorphism invariant approach to quantum gravity. It provides
a lattice regularization of the formal gravitational path integral via

a sum over causal triangulations.

\ discrete
continuous
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Discretization

The partition function

/ D(g]e’S™ 6] —sn 3 =517
T

The action
The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called the Regge action

St — —é/dt/de\/E(R—%\)

\

SRIT] = —KoNo + KaNg + A(Na1 — 6Np)

No, Na, Ng1 number of vertices, simplices and {4, 1}-simplices
Ko, K4, A bare coupling constants (G, A\, a;/as)

rsa: 21050009 Page 4/68



Topology and causality in CDT
>
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Causal Dynamical Triangulations assumes a global
proper-time foliation of the spacetime manifold M = X x S'.
Leaves of the foliation X (spatial slices) are built of equilateral
tetrahedra. The spatial topology is fixed (controlled) and is
not allowed to change in time (spherical or toroidal).

Distinction between time-like and spatial-like links.

Wick rotation (a2 — —a?).

Time-periodic boundary conditions are chosen for simplicity.
A
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Fundamental building blocks

Two types of simplices: {4,1} and {3.2} 4 mirror reflections.
Simplices connect adjacent slices.

t+1
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Fundamental building blocks

Two types of simplices: {4,1} and {3.2} 4+ mirror reflections.
Simplices connect adjacent slices.
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Fundamental building blocks

and {3,2} + mirror reflections.

1)

Simplices connect adjacent slices.

Two types of simplices: {4,

Page 8/68

rsa: 21050009



GoerlichPerimeter... x

Fundamental building blocks

Two types of simplices: {4,1} and {3.2} 4+ mirror reflections.
Simplices connect adjacent slices.
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Monte Carlo simulations
During the simulations, we perform a random walk over the state

space.

Ergodicity all possible configurations can be reached
Fixed topology moves do not change the topology
Causality moves preserve the foliation

4D CDT set of seven types of Pachner moves

Fixed volume  additional volume fixing term

Example of a 2D Monte Carlo move
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Coordinates via classical scalar fields with a jump

We can use classical scalar fields to define coordinates

» For a toroidal topology, we can define four non-contractible
and non-equivalent three-dimensional hypersurfaces.

» For each boundary, we introduce a classical scalar field
(non-dynamical) with a jump at the boundary.

» Every simplex is assigned four real numbers (™, ¥, ©?, ') -
values of four scalar fields for the four boundaries (x, y, z, t).

» We use those values as “coordinates” of a simplex .

» The boundary is non-physical and is introduced to stretch the
scalar field, thus the classical solution should depend trivially

on the boundary.
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Classical scalar field with a jump at the boundary

» The action of the free real scalar massless field theory with
periodic boundary conditions with a jump at the boundary is

1 .
Slel = 5 [ d*x Vg(x)9upd"p — Slel = D _(vi—pi—Bjj)?,
<>/

where B is an antisymmetric jump matrix,

(+1 if i — J crosses the boundary in positive direction,

Bjj = ¢ —1 if i — j crosses the boundary in negative direction,

0 otherwise.

» When crossing a boundary, a simplex sees the field value of its
neighbor increased or decreased by one (orientation).

» Non-dynamical - has no impact on quantum geometries
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Coordinates via a scalar field with a jump
» The classical solution, which minimizes the action,

Slel =) (wi—wj— By =9 Lo —2p"b+||B|Z

1<+
is a solution to the discrete Poisson equation
Lo = b,

where L is the Laplacian matrix, bj = ) ; Bjj ¥ a jump vector,
and ||B||2 = D 85 is twice the boundary area.
» Solutions transform trivially under boundary redefinition.
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Coordinates via a scalar field with a jump
» The classical solution, which minimizes the action,

rsa: 21050009

Slel =) (wi—wj— By =9 Lo —2p"b+|B|Z

i<+

is a solution to the discrete Poisson equation

Lip = B,

where L is the Laplacian matrix, bj = ) ; Bjj is a jump vector,
and ||B||Z2 = Yo 85 is twice the boundary area.

» Solutions transform trivially under boundary redefinition.

» The jump stretches the scalar field, although not necessarily in

0, 1] interval.
)

|
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Coordinates via a scalar field with a jump
» The classical solution, which minimizes the action,

Slel =) (wi—wj— By =9 Lo —2p"b+|B|Z

i<+
is a solution to the discrete Poisson equation
Lo = b,

where L is the Laplacian matrix, bj = ) ; Bjj is a jump vector,
and ||B||2 = T 85 is twice the boundary area.
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Classical scalar field with a jump at the boundary

» The action of the free real scalar massless field theory with
periodic boundary conditions with a jump at the boundary is

Slel = 5 [ d*x Va0 — Slel = 3 (oi—e—By)>

o <]

where B is an antisymmetric jump matrix,

L SR — J crosses the boundary in positive direction,

Bj =4 —1 if i — j crosses the boundary in negative direction,

0 otherwise.

» When crossing a boundary, a simplex sees the field value of its
neighbor increased or decreased by one (orientation).

» Non-dynamical - has no impact on quantum geometries
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Solving large linear systems
Solving the discrete Poisson equation

L= b,@
is a technical problem. The Laplacian matrix is given by
L=5-1-A,

where A is the adjacency matrix for a dual triangulation,

| 1 1f 7 1s adjacent to
Coordinates via distances

We used both direct and iterative methods to solve the
discrete Poisson equation.

Direct Cholesky decomposition - via CHOLMQOD library.

o : . ]
Iterative Parallel preconditioned conjugate gradient i,

method with symmetric successive
over-relaxation and approximate inverse -
own implementation using OpenMP.

rsa: 21050009 a pOS|'[|Ve constant IS added to L1 TIXIng 901 — 1J.
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Solving large linear systems
Solving the discrete Poisson equation

L= o
is a technical problem. The Laplacian matrix is given by
L=5-1-A,

where A is the adjacency matrix for®a dual triangulation,

1 if / is adjacent to J,
Ay =

0 otherwise.

» The adjacency matrix and the Laplacian matrix are large
(10° x 10°) and sparse matrices (6 - N non-zero elements).

» Up to the (single) zero mode, the Laplacian matrix is a real
positive-definite symmetric matrix. To remove the zero mode

% Lj =0and ¥ Bj; =0
IJ IJ
92 21050009 a positive constant is added to Li; fixing ¢1 = 0. Page 20/68



Boundary redefinition
» |n general, a solution is not contained withing [0, 1] range.

-

i
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It is possible to perform a continuous transformation of a
boundary, so that the solution interpolates between 0 and 1.
For periodic boundary conditions with a jump at the boundary,
the solutions are invariant under the boundary redefinition up
to shift modulo-one. Solutions for two equivalent boundaries
belong to the same equivalence class.

Yet, the field values are stretched over a given range.
Flipping a simplex on the other side of the boundary changes
the field value by 1. Mapping of solutions with different

boundaries is trivial.
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Boundary redefinition

» |n general, a solution is not contained withing [0, 1] range.

It is possible to perform a continuous transformation of a
boundary, so that the solution interpolates between 0 and 1.
For periodic boundary conditions with a jump at the boundary,
the solutions are invariant under the boundary redefinition up
to shift modulo-one. Solutions for two equivalent boundaries
belong to the same equivalence class.

Yet, the field values are stretched over a given range.
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the field value by 1. Mapping of solutions with different
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boundaries is trivial.
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Coordinates via a scalar field with a jump
» The classical solution, which minimizes the action,

Slel =) (wi—wj— By =9 Lo —2p" b+ Bz

adl
is a solution to the discrete Poisson equation
Ly &= b,
where L is the Laplacian matrix, bj = ) ; Bjj is a jump vector,

and ||B||2 = BT 85 is twice the boundary area.
» Solutions transform trivially under boundary redefinition.
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Boundary redefinition
» |n general, a solution is not contained withing [0, 1] range.
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It is possible to perform a continuous transformation of a
boundary, so that the solution intetpolates between 0 and 1.
For periodic boundary conditions with a jump at the boundary,
the solutions are invariant under the boundary redefinition up
to shift modulo-one. Solutions for two equivalent boundaries
belong to the same equivalence class.

Yet, the field values are stretched over a given range.
Flipping a simplex on the other side of the boundary changes
the field value by 1. Mapping of solutions with different

boundaries is trivial.
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Boundary redefinition
» |n general, a solution is not contained withing [0, 1] range.
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It is possible to perform a continuous transformation of a
boundary, so that the solution interpolates between 0 and 1.
For periodic boundary conditions with a jump at the boundary,
the solutions are invariant under the boundary redefinition up
to shift modulo-one. Solutions for two equivalent boundaries
belong to the same equivalence class.

Yet, the field values are stretched over a given range.
Flipping a simplex on the other side of the boundary changes
the field value by 1. Mapping of solutions with different
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Properties
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» For a toroidal contfiguration, we can assign to each simplex i a

set of coordinates (¢, ], %, ¢}) and plot the volume density
distributign (projection).

The exact position of the boundary is irrelevant. After any
shift modulo-one operation (boundary redefinition),

@i — (p; + const) mod 1,

the points fit into a [0, 1]* hypercube.

The coordinates preserve the structure of the triangulation.
Coordinates of each simplex are equal to the mean value of the
coordinates of its neighbors.

The coordinate ¢! is not the same as the one coming from the
original CDT foliation.
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Properties
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» For a toroidal contfiguration, we can assign to each simplex i a

set of coordinates (¢¥, %7, %, ¢}) and plot the volume density
distribution (projection).

The exact position of the boundary is irrelevant. After any
shift modulo-one operation (boundary redefinition),

@i — (p; + const) mod 1,

the points fit into a [0, 1]* hypercube.

The coordinates preserve the structure of the triangulation.
Coordinates of each simplex are equal to the mean value of the
coordinates of its neighbors.

The coordinate ¢! is not the same as the one coming from the
original CDT foliation.
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Fractality

» We observe a remarkable pattern of voids and filaments, which
qualitatively looks quite similar to the pictures of voids and
filaments observed in our real Universe.

» The scalar field changes are smaller inside outgrowths.

Outgrowths are visible as dense clouds of points (large
volume).
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Phase structure
» The Einstein-Hilbert action

SEHg] = —é/dt/de\/g_(R —2A)

» The Regge action
SRIT] = —KoNg +eKa Ny + A(Nap — 6Np)

» Parameters:

Ny number of vertices
Nz number of simplices
Na1 number of simplices of type {4,1}

» Three bare coupling constants:

Koy inverse gravitational constant, Ky ~ é
K, cosmological constant, K4 ~ A (tuned)
A asymmetry factor, A ~ 2t

)

v Rich phase structure: A, B, Bifurcation, C (de Sitter).
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Phase structure

f—(Tu ned cosmological consta nt]

5[7—]:—K0 I + A

O.S—Avr |J

(Two coupling constantsJ f
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Bifurcation phase
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Dynamical scalar fields

» Thus far, the scalar field was only used to introduce
coordinates on an existing triangulation and had no dynamical
Impact.

» What effect do dynamical fields have on the underlying
(quantum) geometric degrees of freedom?

» The continuous Euclidean action for a massless scalar field:
1 L ]
Slg, ¢l =5 [ d'x Vg(x) 0"o(x)dup(x), @(x) € SH(0)

» The discrete counterpart of the matter action decomposes into
the quantum and the classical parts:

SIT,o=@+nl=> (vi—¢; — IBy)’
el
i 77T Ly + 62§clas [7-]
§ms[T = gTLp—2b" 3 + |BI2, Ly =b
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Jump in time direction

One scalar field with periodic boundary conditions and a jump of
size § in time direction.

Jump in direction ¢
18000

16000 |
14000 |
12000 |
_10000 |
= 8000
6000 -
4000 -
2000 -
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Minisuperspace model with scalar field
Minisuperspace action

Stvoel = [ A VB (#R - A+ (09 ) v x 2(0)
Constraints

V:/dtv, 5:/dtgb:cp(§)—<p(—§), v(t) > ¢

Constant solution for § < 27

V

| 5 ,
V(t)_?a go(t)—?, S—ﬁ'(S
Cosine solution for § > 27
2T s
@=Eos (“C k|- eFe |f=7 _ A
v{t) = G#0) s 2 elt)=
21050009 2 § é ’t’ é 7 V(t)
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Minisuperspace model with scalar field

Classical solutions

v(t)

v(t) = ¢ cos (27”1‘) +c+¢

pas ¥ / \

wt} = eonst. =

N<

™

Phase transition at § =

Sl
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Minisuperspace model with scalar field
Minisuperspace action

TR 2
58] = / e L v=ud)x D), o =elt)

Constraints

V:/dtv, 6:/dt¢:¢(§)—¢(—£), v(t) > ¢

Constant solution for § < 27

V | 5 Vo
V(t)_?a 90(7?)—?9 S—ﬁ'(S
Cosine solution for § > 27
27 s
é=cos{—t|Fe+e |8=<3 _ A
Vi) = G#0) -2 elt)=
rsa: 21050009 2 2 S ’t’ é k2 V(t)
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Minisuperspace model with scalar field

Classical solutions

v(t) = c- cos (%”t) +c+e

c+¢ A

NI<

™

CIEIES
ro|N -
\j

Phase transition at § =

N
Sl
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Jump in time direction

One scalar field with periodic boundary conditions and a jump of
size § in time direction.

Jump in direction ¢
18000

16000 |
14000 |
12000 |
_10000 |
= 8000
6000 -
41000 -
2000 -
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Minisuperspace model with scalar field

Classical action
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WE e e e S = e

Sclass

30:_ ........... ............ ............ ............. s RN ..........

20l
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Phase transition at 0 = 2Z
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Minisuperspace model with scalar field
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Classical solutions

v(t) = c- cos (27”1‘) +ec+e

c+ & { /

v(t) = const. =

NI<

]

Phase transition at § =

N
Sl
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Jump in time direction

One scalar field with periodic boundary conditions and a jump of
size § in time direction.

Jump in direction ¢
18000

16000 |
14000 |
12000 |
_10000 |
S :
=~ 8000 -
o i
6000 -
4000 -
2000 -
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Three fields
- 5t
with a jump
6 =1.0.

Projection on
t X
2l o

23000 n L

20000

15000

10000

5000

1]
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Three fields
s 1 5t
with a jump
o =2.5.

Projection on
(,Ot o (,OX-

Jumps in directions z, ¥, z

30000

23000 n L

20000

15000

10000
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Minisuperspace model with scalar field

Classical action

70_ IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII &l

60 = e b oo s TR — e sommaame s
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Minisuperspace model with scalar field

Classical solutions

v(t) = c- cos (%”t) +c+e

c+¢ { /

NI<

™

Phase transition at § =

N
Sl
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Three fields
o 1ot
with a jump
6 = 4.0.

Projection on
(,Ot L (PX-

Jumps in directions z, y, z

35000 ‘\ ‘ =
om0 Ee
s VAR NG R

e /

N(¢7) —
400000 N(evy —H
350000 Mg —
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Jumps in spatial

Three fields
gl N0
with a jump
6 = 10.0.

Projection on
3 X

, , -

Jumps in directions z, y, z
200000
180000 [ ) —

n

160000
140000
120000 x|
100000 \
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Three fields
07, p*
with a jump
g =2.5.
Projection on
=

0

Jumps in directions z, ¥, z
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Jumps in directions x, y, z with 0 = 7.0

Jumps in directions z, y, z, § = 7.0
70000 : .

l <nt> ]
A _"'- ; 60000 [ ........... I 'Tlt #
o : | | a+b-cos?(t/T) .

50000 _ _________________________ __________________________ e _

40000 ; _________________________ éum_n_”“m_“_m_é __________________________ 5 _____________________________ }é
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[ ae—
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (¢), which results in an effective change of
spatial topology. o

v(t) = ¢ - cos (27”23) +c+¢

- y \

v(t) = const. = 1—;

INIEIE S
ra|N
Y

ol
| L
1]
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (¢), which results in an effective change of
spatial topology.

v(t) = ¢ - cos (%t) +c+¢

y
ct+¢€ i / \

v(t) = const. = 1—;

[Nl
volNy 1
|

ol
| L
IR
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (&), which results in an effective change of
spatial topology.

T
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (¢), which results in an effective change of
spatial topology.

@> Torus ) E—
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (¢), which results in an effective change of
spatial topology.
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Topology change

A scalar field with a strong enough jump (0) in a spatial direction
introduces a pinching (¢), which results in an effective change of
spatial topology.
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Spherical vs toroidal spatial topology

Spherical (S3 x S!') Volume profile Toroidal (73 x S1)

; 9000 ‘ T T \ T \
(ng) —— (ne)
¢ 8000 Tt

9000

8000 F

7000 F 7000 |

6000 6000 |
5000 F 5000 |
4000 F 4000 |

3000 F 3000 |

2000 2000 frmc mﬂvﬂmﬁw ijjwﬂ MHIJL@M
1000 F 1000
?740 —30 —*éU —710 6 16 26 30 40 = 0 16 50 36 46 56 Gb Tb 86
e B 1/3 — 1 ¥
Llv] =+ + py /3 — A\v Llv] = 7% + — A\v
v(t) =a+ b-cos’(t/T) v(t) = const.

» Global proper-time foliation of spacetime manifold: M = ¥ x S*.
The spatial leaves of foliation & have a fixed topology.

» A difference between spherical and toroidal spatial topology is
visible in the volume profile.

Page 64/68
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Spherical vs toroidal spatial topology
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» Global proper-time foliation of spacetime manifold: M = ¥ x S*.
The spatial leaves of foliation & have a fixed topology.

» A difference between spherical and toroidal spatial topology is
visible in the volume profile.
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Conclusions |

» Causal dynamical triangulations is a model of generic
geometry fluctuations at the Planck scale.

» We introduced coordinates in spacetimes with toroidal
topology via real classical scalar fields that span some interval
and are invariant under boundary redefinition.

» To study phase transitions, we need an ensemble of
observables which might shed some light on geometric
fluctuations. Often, it is convenient to have a coordinate
system at our disposal.

» Fractal outgrowths are visible as dense clouds of points.

» We observe a remarkable pattern of voids and filaments,
which qualitatively looks quite similar to pictures of voids and
filaments observed in our real Universe.
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Conclusions |1

» Introduction of dynamical scalar fields with matching
topological boundary conditions has a dramatic effect on the
geometries that dominate the CDT path integral.

» This new kind of coupling between the topology of the matter
fields and the topology of spacetime is likely to result in a
phase transition for sufficiently strong coupling.

» The simple minisuperspace model predicts a first order phase
transition as a function of § for a jump in time direction.

» The classical limit agrees with the minisuperspace model.
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Thank You!
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