Title: D-branes and Orbit Average

Speakers: Shota Komatsu

Series: Quantum Fields and Strings
Date: May 04, 2021-2:00 PM
URL: http://pirsa.org/21050008
Abstract: I will explain how to compute\ correlation functions of two heavy operators and a light BPS single-trace operator at strong coupling using a dual description of D-branes absorbing a supergravity mode. Our approach is inspired by the large charge expansion of CFT and resolves some confusions in the literature on the holographic computation involving heavy operators. In particular, we point out two important effects which are often missed; the first one is an average over classical configurations of the heavy state, which physically amounts to projecting the state to an eigenstate of quantum numbers. The second one is the contribution from wave functions of the heavy state. Time permitting I will also\ comment on possible applications to states dual to black holes and fuzzballs.

D-branes and Orbit Average
Shota Komatsu (CERN)
Perimeter Institute, Sting Seminar
Based on ankiv:2103. 16580
with Peihe Yang. Junbao Wur $\underset{\text { Tianju Univessity }}{\text { Yunfeng Jiang }} \underset{\text { CERN }}{\text { CR }}$

Plan
I. Introduction: Large change, Large Δ in holography
II. Correlators of D-branes: Review \& Puzzle
III. New Approach

TV. Discussion: Hs \& Fuzzballs

Operators and their duals in AdS/CFT

- AdS/CFT relates
$\left.\partial\right|_{C F T} \longleftrightarrow$ Excitation in AdS
- $\Delta \sim O(i) \rightarrow$ graviton, light matter
$\Delta \sim D\left(\lambda^{1_{4}}, \lambda^{1_{2}}\right) \rightarrow$ Stringy states

$\Delta \sim D(N) \rightarrow$ D-branes
$\Delta \sim \partial\left(N^{2}\right) \rightarrow$ deformed geometry $\langle L M$, fuzzballs

- Operators with large Δ often come with
other large quantum numbers $(V(1)(R-)$ charge J, Spin S)

$$
\Delta \gtrsim J, S
$$

Lange charge Expausion in CFT
Hellerman, Orland, Reffert, watanabe Monin, Pirtskhalava, Rattazzi, Sé pold

- (Semi-) universal prediction of CFT data @ lage chaye $\Delta \sim J^{\frac{d}{d-1}}$ for $C F T_{d}$
- CFT on $R_{t} \times S^{d-1}$ with radius R

$$
\leadsto \text { Energy }=\Delta / R \quad \text {, clarge } \sim J
$$

\square

- Assume that, in $R \rightarrow \infty$ himit, the lange change state becomes a state on $R^{1, d-1}$ with finite energy \& change densities \leadsto Energy $\stackrel{R \rightarrow \infty}{\sim} \varepsilon \times R^{d-1}$, clange $\stackrel{R \rightarrow \infty}{\sim} j \times R^{d-1} \rightarrow \Delta \sim R^{d} \sim J^{d / d-1}$
- 1/J corrections can be compured by EFT methods

Large Charge in SCFT
$-\Delta \sim J^{d / d-1}$ is incorrect for superconformal theonies. BPS states: $\triangle x \#^{i} \mathrm{~J}<J^{d / d-1}$

- BPS state in SCFT $\xrightarrow{R \rightarrow \infty}$ a state on $R^{1, d-1}$ with zero energy
- For $\mu=2$ SCFT in 4d, [Hellerman, Maeda]
(large charge expansion) \leftarrow (Coulomb-brauch EFT)
$\operatorname{In}\left[F^{\prime \prime}\right] \times \int d^{4} x d_{\mu} A d^{\mu} \bar{A}+$ ligher der.
- For rank $1 \quad N=2 \operatorname{SCFT}(\sim 1$ 1-dimensional $C B$ moduti)
$\left\langle\partial_{J} \overline{\partial J}\right\rangle \sim J!(\#)^{2 J} J^{\alpha}$ en Agnemment with localization $\left(\alpha \sim a_{u v}-a_{I R}\right)$ [Gerchkowitz, Gomis. Intiaque, Karasik Komardolsta, Pafu]

Large Charge S CFT with Higher Rank

- Analysis is more complicated for theories w/. higher rank [1. More possibilities of symmetry breaking patterns. EFT $\left[\begin{array}{r}S U(2) \rightarrow U(1) \times U(1) \\ \text { 2. Classification of } S U(3) \rightarrow(U(1))^{3}, U(1) \times S U(2) \\ \text { SUSie higher derivative terms (F-terns) }\end{array}\right.$

3. Degeneracy of BPS opS.

SU(2): $\left.\operatorname{Tr}\left[z^{2 J}\right]=\left(\operatorname{Tr}\left[z^{2}\right]\right)^{J}, \quad \operatorname{sulN}\right): \operatorname{Tr}\left[z^{J J}\right] \neq\left(\operatorname{Tr}\left[z^{2}\right]\right)^{J}$
4. "Gram-Sehmidtting" of localization results is more complicated for SULN)

- 1 \& 3 are related.

Toy Model : Complex Matrix Model.
$Z, \bar{Z}: N \times N$ complex matrices.

$$
\langle\partial \bar{\partial}\rangle=\int d z d \bar{z} \quad \frac{\hat{\partial}}{\partial} e^{-N \operatorname{Tr}[z \bar{z}]}
$$

- Using the result by Ginibre, this reduces to eigenvalues.

$$
\int \prod_{j} d^{2} z_{j} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \times \nu(z) \times \bar{\partial}(\bar{z}) \times \exp \left[-N \sum_{k}\left|z_{i}\right|^{2}\right]
$$

- Take "single trace op" $0=\operatorname{Tr}\left[z^{\top}\right]$

$$
\leadsto \sum_{k} z_{k}^{J} \cdots \quad \sum_{\text {permutation }} \cdots N \times z_{1}^{J} \cdots
$$

\rightarrow source term only for $z_{1} \rightarrow U(N) \rightarrow U(1) \times U(\mu-1)$

Toy Model: Complex Matrix Model.

$$
\int \prod_{j} d^{2} z_{j} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \times \partial(z) \times \bar{\partial}(\bar{z}) \times \exp \left[-N \sum_{k}\left|z_{i}\right|^{2}\right]
$$

- "Doubl e-trace operator" " $O=\operatorname{Tr}\left[Z^{J_{1}}\right] \operatorname{Tr}\left[Z^{J_{2}}\right]$

$$
\leadsto \sum_{n, m}\left(z_{n}\right)^{J_{1}}\left(z_{m}\right)^{J_{2}}=\sum_{n \neq m} \underbrace{\left(z_{n}\right)^{J_{1}}\left(z_{m}\right)^{J_{2}}+\sum_{n} \underbrace{}_{l} \underbrace{\left(z_{n}\right)^{J_{1}+J_{2}}}_{l}}_{l} \begin{aligned}
& U(N) \rightarrow U(1) \times U(1) \times U(N-2) \quad U(N) \rightarrow U(1) \times U(N-1)
\end{aligned}
$$

\leadsto Mixture of sym breaking patterns

- Cowect op. : $\operatorname{Tr}\left[z^{J_{1}}\right] \operatorname{Tr}\left[z^{J_{2}}\right]-\operatorname{Tr}\left[z^{J_{1}+J_{2}}\right]$
- Can be generalized to other sym breaking patterns (shh similar should work for general $N=2 S C F T$) But general expressions are rather complicated...

Good Basis @ Large N

- @ large N, there exist a nice basis of D^{\prime} 's.

- $\stackrel{l_{1}}{\ldots 1} \quad l_{k}$ = magnitude of source term for $k-t h$ eigenvalue.

$$
\begin{aligned}
& \leadsto U(1) \times U_{(1)} \times U_{(1)} \times U(N-3) \\
- & J
\end{aligned}
$$

- They also have nice holographic descriptions.

Holography for Schur polynomials

- In $\mu=4$ syM, $X_{\text {M }}(Z)(V(1) \times v(v-1))$ is dual to. dual grant graviton

- spherical D3 brave
$R_{t} \times S^{3} \subset A d S_{5}$
- size \sim change
- In the lane charge limit, dual giant graviton approaches AdS bdy and can be approximated by a $\underset{N=4 \text { STH in } C B}{f l a t} D 3$-brave dAdS $_{\text {action }}$ as large charge expansion.

Giant Gravitons.

- Interestingly, AdS/CFT provides an EFT description also in the "opposite" limit

$$
x_{月}(z) \sim \epsilon^{a_{1} \cdots a_{J} c_{1} \cdots c_{N-J}} \epsilon_{b_{1}-\cdots b_{J} c_{1} \cdots c_{N-J}} z_{a_{1}}^{b_{1}} \cdots z_{a_{J}}^{b_{J}}
$$

sub-determinant operation (expansion of $\operatorname{det}[I+Z]$)

D3-brave : pointike in $A d S_{5}$
extended in S^{5}
(radius $\left.\cos ^{2} \theta_{0}=J / N\right)$

- Would be nice to develop field theory understanding...
II. Correlators of Dtranes.

Review \& Puzzles

Three-point functions of Giant Gravitons

- Consider $\left\langle D_{J}\left(x_{1}, Y_{1}\right) \quad D_{J+k}\left(x_{2}, Y_{2}\right) \quad D_{L}\left(x_{3}, Y_{3}\right)\right\rangle$ in $N=4$ SYM $\quad O(\hat{N}){ }^{\tilde{N}}{ }_{O(1)}$

$$
D_{J}(x, Y) \equiv X_{\AA_{J}(Y \cdot \Phi)}, \quad \partial_{L}(2, Y) \equiv \operatorname{Tr}\left[(Y \cdot \Phi)^{L}\right]
$$

-Y.I $\equiv \sum_{I=1}^{6} Y_{I} \Phi_{I}, \quad Y_{I} Y^{I}=0 \leadsto$ All ops are $1 / 2 B P S$

- Thanks to SUSY, $\left\langle D_{J} D_{J t k} D_{L}\right\rangle$ is independent of $\rho_{M M}^{2}$ [Baggie, de Boer, Papadodimass]
- we can directly compare field theory \& holography.

Prediction from field theory [sk, Mag, wu, Jana]

$$
\begin{aligned}
{\underset{\text { Cincture cost }}{C_{J} D_{j+k} D_{L}}=}-\frac{\sqrt{L}\left(i^{L-k}+(-i)^{L-k}\right) \quad\left(\cos ^{2} \theta_{0} \equiv J / N\right)}{2} & \times \frac{\Gamma\left(\frac{L+k}{2}\right) \cos ^{2} \theta_{0} \sin ^{2} \theta_{0}}{\Gamma(1+k) \Gamma\left(1+\frac{L-k}{2}\right)}{ }_{2} F_{1}\left(\frac{2 k-L}{2}, \frac{2+k+L}{2}, 1+k ; \sin ^{2} \theta_{0}\right)
\end{aligned}
$$

- Complicated result owing to the combinatovics of wick contractions. (Nobody amputed it before...)
- Our goal is to reproduce it from holography.

Holographic Description

- DJ : giant graviton D3-brave
∂_{L} : supergravity mode with KK momentum L

- We need to compute how the D-brane gets perturbed by a SUGRA mode.

Approaches the the literature
[Bissi, Kristansen, Youg, Zoubas 2011]
$\left\langle D_{J} D_{J+k} \partial_{L}\right\rangle$

- DJ : dual to D-brave in Ad $A^{i} d S \quad S_{\text {oII }} \sim N \int d^{4} \sigma \sqrt{\operatorname{let}\left[S_{\mu \nu} \text { do } X^{\mu} d o X^{\nu}\right]}$ \leadsto worbl volume is descibed by $D B I+W Z$
- D_{L} sources quantum fluctuations of metric etc. $\partial_{L}\left(x_{3}\right) \mid \leadsto$
$\delta g_{\mu v} \sim\left(\frac{2 z}{z^{2}+\left(2-x_{3}\right)^{2}}\right)^{L}:$ Bulk-to-bdy propagator
$s g_{A B} \sim Y_{L}(\Omega)$: Spherial hammonics
- Perturb $S_{D B I}+S_{W z}$ by $\delta g \leadsto \delta S_{D B T}+\delta S_{W z} \sim\left\langle D_{J} D_{J+k} D_{L}\right\rangle$
- Justification : $\int \boxplus x \quad e^{-S_{D B T}+S_{\omega z}} \xrightarrow[\rightarrow]{\delta} \int \boxplus x \quad \delta\left(S_{D B I}+S_{\omega z}\right) e^{-S_{D B I}+S_{\omega z}}$ $\left.\begin{aligned} & \text { path integral } \\ & \text { of D-brane }\end{aligned} \quad \stackrel{\text { Saddle }}{\longrightarrow} \delta\left(S_{\text {PBI }}+S_{\omega Z}\right)\right|_{x^{*}} e^{-S_{D B I}^{*}+S_{\omega Z}^{*}}$

$$
\left\langle D_{J} D_{J+k} D_{L}\right\rangle \sim \delta S_{D B I}+\delta S_{W Z}
$$

- Result is insensitive to k since the classical sol. is determined only by J \& " δ " is determined by L
- Result for $k=L$ (extremal correlator) does not match the field theory result [Bissi, Kistjansen, Yong, Zoubos]
- Latin a "reguluization" presumption that nquatuces field-thery answer was proposed. [Kistjausen, Mani, Young] But the puscaiption seems seff-monsstert.
- Some results for non-erthemal comelator $(k \neq L)$ were found to agree [Capita, de Hello Koch, Zounds]. But in general they disagree. (even for $k=0$)

Our Conclusion

- Previous approaches miss 2 important effects.

1. Orbit Average
2. Wave functions of heavy states

- Once these are included, the results agree with results from field theory.

Quantum Mechanical Toy Model.
[Monin, Pirtskhalana, Rattozzi, Seipold]

- Consider $Q M$ on $S^{\prime}(\theta \in[0,2 \pi]) \omega / . U(1)$ sym

$$
\theta \rightarrow \quad \theta+c
$$

- Compute $\langle J+k| \underset{\text { light }}{\partial(t=0)} \mid \underset{\text { heavy } \omega / \text { in } U(1) \text { change }}{\mid J}$ th \quad limit light Theory $\omega / . U(1)$ change J
$J \rightarrow \infty, \quad \hbar \rightarrow 0, \quad \hbar J:$ fixed.

$$
-\langle J+k| \partial(t=0)|J\rangle=\int \nabla \theta e^{-i(J+k) \theta(t=+\varepsilon)} \partial[\theta(t=0)] e^{i J \theta(t-\varepsilon)} e^{\frac{i}{\hbar} S(\theta]}
$$

\downarrow Saddle put approx. $\theta=\theta_{0}^{*}\binom{$ sol. of saddle eq. }{ with }

$$
\sim e^{-i(J+k) \theta_{0}^{*}} \partial\left[\theta_{0}^{*}(t-0)\right] e^{i J \theta_{0}^{*}} e^{\frac{i}{\hbar} S\left[\theta_{0}^{*}\right]}
$$

Quantum Mechanical Toy Model.

$$
-\langle J+k| \partial|J\rangle \sim e^{-i(J+k) \theta_{0}^{*}} \partial\left[\theta_{0}^{*}(t-0)\right] e^{i J \theta_{0}^{*}} e^{\frac{i}{\hbar} S\left[\theta_{0}^{*}\right]}
$$

- This is incorrect. Because of $U(1)$ sym. $(\theta \rightarrow \theta+c)$ we can construct a family of saddle-put sol.

$$
\theta_{c}^{*} \equiv \theta_{0}^{*}+c
$$

- The correct formula is "average over c"

$$
\begin{aligned}
\langle J+k| \partial(J\rangle & \sim \int_{0}^{2 \pi} \frac{d c}{2 \pi} e^{-i(J+k) \theta_{c}^{*}} \partial\left[\theta_{c}^{*}(t=0)\right] e^{i J \theta_{c}^{*}} e^{\frac{i}{t} S\left[\theta_{c}^{*}\right]} \\
& =e^{\frac{i}{\hbar} S\left[\theta_{0}^{*}\right]} \int_{0}^{2 \pi} \frac{d c}{2 \pi} e^{-i k c} \partial\left[\theta_{c}^{*}(t=0)\right]
\end{aligned}
$$

Quantum Mechanical Toy Model.
$-\langle J+k| \partial|J\rangle \sim e^{\frac{i}{t} S\left(\theta_{0}^{*}\right]} \int_{\Delta \Delta}^{\frac{2 \pi}{2 \pi}} \frac{d c}{e_{\text {wave function }}^{-i k c} \partial\left[\theta_{c}^{*}(0)\right]}$
obit avenge [Bajnok, Joni] for HHL sting collators.

- For $\partial_{p} \sim e^{i p \theta}$ (charge p operator), we get

$$
\langle J+k| \partial_{p}|J\rangle \times \int_{0}^{2 \pi} \frac{d c}{2 \pi} e^{-i k c} e^{i p c}=\delta_{k, p}
$$

- Orbit average \& wave functions are crucial for reproducing the charge conservation.

Orbit Average and Symmetry Breaking

- Generalization: If \exists multiple commuting charges \rightarrow average over multi-dimensional moduli of sols.
- Extreme case: In integrable theories, we have m many charges.
$\leadsto D_{0}$ we need to ∞-dim integral ? $\rightarrow N_{0}$.
- Classical ($=$ saddle) sols. are invariant under most of those symmetries. We only need syms broken by solus.

$$
\left(x^{*} \underset{\text { burbengen. }}{\text { gen }} \text { solution }\right)
$$

- Empirical Rule: (dim. of moduli) $=\left(\begin{array}{cc}\# & \text { of nonzero } \\ \text { commuting charges }\end{array}\right)$

Quantum Mechanical Toy Model.

$$
-\langle J+k| \partial|J\rangle \sim e^{-i(J+k) \theta_{0}^{*}} \partial\left[\theta_{0}^{*}(t-0)\right] e^{i J \theta_{0}^{*}} e^{\frac{i}{\hbar} S\left[\theta_{0}^{*}\right]}
$$

- This is incorrect. Because of $U(1)$ sym. $(\theta \rightarrow \theta+c)$ we can construct a family of saddle-put sol.

$$
\theta_{c}^{*} \equiv \theta_{0}^{*}+c
$$

- The correct formula is "average over c "

$$
\begin{aligned}
\langle J+k| \partial(J\rangle & \sim \int_{0}^{2 \pi} \frac{d c}{2 \pi} e^{-i(J+k) \theta_{c}^{*}} \partial\left[\theta_{c}^{*}(t=0)\right] e^{i J \theta_{c}^{*}} e^{\frac{i}{\hbar} S\left[\theta_{c}^{*}\right]} \\
& =e^{\frac{i}{\hbar} S\left[\theta_{0}^{*}\right]} \int_{0}^{2 \pi} \frac{d c}{2 \pi} e^{-i k c} \partial\left[\theta_{c}^{*}(t=0)\right]
\end{aligned}
$$

Orbit Average and Symmetry Breaking

- Generalization: If \exists multiple commuting charges \rightarrow average over multidimensional moduli of sols.
- Extreme case: In integrable theories, we have m many charges.
$\leadsto D_{0}$ we need to ∞-dim integral ? $\rightarrow N_{0}$.
- Classical ($=$ saddle $)$ sols. are invariant under most of those symmetries. We only need syms broben by solus.

$$
\left(x^{*} \underset{\text { brobengen. }}{\vec{~}} \text { new solution }\right)
$$

- Empirical Rule: (dim. of moduli) $=\left(\begin{array}{ll}\# & \text { of nonzero } \\ \text { commuting charges }\end{array}\right)$

Application to grant gravitons.

- To apply the previous arguments, it's better to consider 3pt as a matrix element $\left\langle D_{J+k}\right| \partial_{L}(t=0)\left|D_{J}\right\rangle$

* we gauge-fix

$$
\sigma^{\circ}=t
$$

- $D_{L}(t=0) \leadsto$ sources quantum fluctuations (δg etc)
\leadsto Operator on the worldvolume of D-brave $@ \sigma^{\circ}=0$

$$
\hat{O}_{L}=\int d^{3} \sigma \delta \mathscr{L}_{D B I}+\delta \mathcal{L}_{W Z} \mid \delta S_{D B I}=\int d^{4} \sigma \delta \mathscr{L}_{D B I}
$$

$$
-\underbrace{\left\langle D_{J+k}\right| D_{L}(t=0)\left|D_{J}\right\rangle}_{\text {defined in } N=4 S T M}=\langle\underbrace{\left\langle\hat{D}_{J+k}\right| \hat{D}_{L}\left(\sigma^{0}, 0\right)\left|\hat{D}_{J}\right\rangle}_{\text {defined on w.V. of } D \text {-brine }}
$$

Application to giant gravitons

- we next evaluate $\left\langle\hat{D}_{J+k}\right| \hat{D}_{L}\left|\hat{D}_{J}\right\rangle$ semiclassically.
- Orbit average \& wavefunction are important.
- Orbit average: Giant graviton $\rightarrow 2$ charges \triangle, J \leadsto Average over 2 divections
$\Delta \longleftrightarrow \tau_{0}$: Conjugate to dilatation (EARS time)
$J \longleftrightarrow \varphi_{0}: S^{5}$ angle (Conjugate to R-sym rotation)
- Wancfunction

$$
\Psi=e^{-\Delta \tau_{0}} \times e^{i J \varphi_{0}}
$$

- In [Bissi etal.], we have $\int d^{4} \sigma(\ldots)$. This splits into $d \tau_{0}$ \& $d^{3} \sigma$.
- Result consistent with charge conservation.
- Result sensitive to k
- Result fully agrees with fielal theory

$$
\begin{aligned}
C_{P_{J} D_{J+k} O_{L}}= & -\frac{\sqrt{L}}{2}\left(i^{L-k}+(-i)^{L-k}\right) \quad\left(\cos ^{2} \theta_{0} \equiv J / N\right) \\
& \times \frac{\Gamma\left(\frac{L+k}{2}\right) \cos ^{2} \theta_{0} \sin ^{2} \theta_{0}}{\Gamma(1+k) \Gamma\left(1+\frac{L-k}{2}\right)}{ }_{2} F_{1}\left(\frac{2+k-L}{2}, \frac{2+k+L}{2}, 1+k ; \sin ^{2} \theta_{0}\right)
\end{aligned}
$$

- Computation can be genevalzed to ABJM (both in IIA limit \& M-theory limit)

Some subtleties about extremal limit

- In the extremal limit $(k=L)$, we have

$$
\sim \underbrace{(k-L)}_{0} \times \underbrace{}_{\infty} d t_{0}(\cdots)+(\text { finite })
$$

- Setting $0 \times \infty$ to zero \rightarrow result does n't agree with Schur-pol. operators or single-particle basis [Aprite et al]
- Analytic continuation from $k-L \neq 0 \leadsto$ Reproduce result for Schur pol.
- But analytic contin. is NOT unique.

29 of 38 tremal limit is sensitive to non-planar corrections

- In [Bissi et al.], we have $\int d^{4} \sigma(\ldots)$. This splits into $d \tau_{0}$ \& $d^{3} \sigma$.
- Result consistent with charge conservation.
- Result sensitive to k
- Result fully agrees with field theory

$$
\begin{aligned}
C_{P_{J} D_{J+k} O_{L}}= & -\frac{\sqrt{L}}{2}\left(i^{L-k}+(-i)^{L-k}\right) \quad\left(\cos ^{2} \theta_{0} \equiv J / N\right) \\
& \times \frac{\Gamma\left(\frac{L+k}{2}\right) \cos ^{2} \theta_{0} \sin ^{2} \theta_{0}}{\Gamma(1+k) \Gamma\left(1+\frac{L-k}{2}\right)}{ }_{2} F_{1}\left(\frac{2+k-L}{2}, \frac{2+k+L}{2}, 1+k ; \sin ^{2} \theta_{0}\right)
\end{aligned}
$$

- Computation can be genevalzed to ABJM (both in IIA limit \& M-theory limit)

So, what are lessons ... ?

- Another (highly nontrivial) precision test of AdS /CFT. But we believe AdS/CFT anyway, don't we ..?
- But ifs worth empasizing that we reproduced "off-diagonal" 3pt $\left\langle D_{J+k}\right| D_{L}\left|D_{J}\right\rangle$ by semiclassical D-branes.
One might say semiclassical computation is insensitive to microscopic (th) difference. But that is false!
$\underset{310 r 38}{\longrightarrow}$ Can we do this for BHt s?
31 of 38

What we expect for $\mathrm{BHs} . .-$?

- States dual to Bits come with exponential degeneracy ($\sim e^{N^{2}}$)
- Conservative viewpoint : Computation of semiclassical BH captures average or universal part of such states
$-\left\langle E_{m}\right| O\left|E_{n}\right\rangle=\partial_{\operatorname{taman}}\left(E_{m}\right) \delta_{n m}+e^{-S(\bar{E}) / 2} f_{0}(\bar{E}, \Delta E) r_{m n}$
$\bar{E}=\frac{E_{n}+E_{n}}{2}, \Delta E=\frac{E_{n}-E_{n}}{2}$ Eigenstate thermalization $\left\langle r_{\text {un }}\right\rangle=0,\left\langle r_{\text {min }}^{2}\right\rangle=1$
- Average of off-diagonal part $6\left\langle r_{m n}\right\rangle=0 \ldots$

Some remarts on ETH

$$
\left\langle E_{m}\right| O\left|E_{n}\right\rangle=\partial_{\text {thanal }}\left(E_{m}\right) \delta_{n m}+e^{-S(\bar{E}) / 2} f_{0}(\bar{E}, \Delta E) r_{m n}
$$

- ETH predicts of diagoual pait is suppressed by

$$
e^{-S / 2} \sim e^{-N^{2} / 2}
$$

- But we need to be caveful ab-1 for which states this holds
- In 2d CFT, if $\left|E_{m}\right\rangle \&\left|E_{n}\right\rangle$ are in the same Verma module $\leadsto 1 /(S(E))^{\#} \quad$ [Besten, Datta, Kraus]
- Average over heary plimalies $\rightarrow e^{-S(x) / 2}$ Brehm, Das, Datta....

Simpler setups

- I states heavy enough to deform geometry but in the same "universality class" as giant gravitons
$\leadsto 1 / 2$ BPS LLM geometry in $N=4$ SYM
- 1/4 BPS fuzz ball geometry in D1-D5 CFT (elliptic geans counts $1 / 8$ BPS)
- LLM geometry: AdS 2 $\times S_{1}^{3} \times S_{2}^{3}$ factor.

(4) S_{1}^{3} shininks
- S_{2}^{3} slininks

Simpler Setups

- Non-rotationally sym pattern

\leadsto time independent $=$ breaks dilatation \leadsto we ned to orbit average!

- Rotationally sym pattern

$$
\begin{aligned}
\leadsto \text { time independent }= & \text { does not break } \\
& \text { dilatation }
\end{aligned}
$$

\leadsto Important difference from D-brane.

- Many to 1 comespondence...?

Gainly seems overcomplete...?

What would be nice to achieve...

- For BHt, we first identify the "orbit" over which we integrate...
- One candidate is horizon soft hair
[Hawking, Perry, Stromiger]
- Ideally, we want to have

7 wave functions
$\left\langle B H^{\prime}\right| D_{\text {light }}|B H\rangle \sim \int d \underset{\text { horizon sym group }}{[H S G]} \Psi_{1}^{*} \partial \Psi_{2}^{\text {ware for sift hair }}$
more dynamical question than reproducing entropy

- Perhaps progress can be made in $A d S_{3} / C F T_{2} \ldots$?

Questions, Coments,
Move Speculations ... ?

