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Abstract: Classical probabilistic models of quantum systems are not only relevant for understanding the non-classical features of quantum
mechanics, but they are also useful for determining the possible advantage of using quantum resources for information processing tasks. & nbsp;A
common feature of these models is the presence of inaccessible information, as captured by the concept of preparation contextuality:& nbsp; There
are ensembles of quantum states described by the same density operator, and hence operationaly indistinguishable, and yet in any probabilistic
(ontological) model, they should be described by distinct probability distributions. &nbsp;In this talk, | discuss a method for quantifying this
inaccessible information and present a family of lower bounds on this quantity in terms of experimentally measurable quantities. These bounds,
which can also be interpreted as a new class of robust non-contextuality inequalities, are obtained based on a family of guessing
games.& nbsp;& nbsp;As an application of this result,& nbsp;l derive a noise threshold for the presence of contextually in anoisy system, in terms of
the average gate fidelity of the noise channel.
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Overview:

From an information-theoretic point of view, what is the most efficient ontological model
(hidden-variable model), that describes a (possibly noisy) quantum-mechanical system?

What is the minimum amount of inaccessible information about the preparation process?

How this minimum inaccessible information depends on the noise in the system?

Our guiding principle for quantifying inaccessible information is the principle of
Preparation Non-Contextuality. In fact, inaccessible information can also be interpreted
as a measure of preparation contextuality.

IM, arXiv:2003.05984 [quant-ph]

Motivations:

* Probing non-classical features of (noisy) Quantum-Mechanical Systems (Theory and Experiment)
* Understanding the limits of Quantum advantage for information-processing tasks

* Investigating the effects of noise on quantum systems

Related Previous works: Hardy (2004), Spekkens (2005), Montina (2007), Leifer (2105), Harrigan-Rudolph (2007)... ..
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]
Outline

* Preliminaries

=  Qperational Theories, Ontological models, Preparation Non-Contextuality

* Inaccessible Information (Lower and upper bounds)

= Step 1: A new proof of Preparation Contextuality of Quantum Mechanics
= Step 2: A new family of robust non-contextuality inequalities from guessing games
= QOperational Max-Relative entropy

= Step 3: Lower bounds on inaccessible information

A=

Ideal Preparation Noise Channel Ideal Measurement

* Noise Thresholds for Contextuality
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Operational Theories
M

The list of probabilities that can be directly measured in experiments. "

N

Probability of outcome 77 in measurement M and preparation ”D; P(m| M, IP)

In Quantum Mechanics ~ P(m|M,P) = Tr(pFy,)

Set of all preparations: Set of all measurements: A/ Tomographically complete.
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Operational Theories
M

The list of probabilities that can be directly measured in experiments. "

Probability of outcome 777 in measurement M and preparation ”D; P(m| M, IP)

In Quantum Mechanics ~ P(m|M,P) = Tr(pFy,)
Set of all preparations: P Set of all measurements: M Tomographically complete.

Ensemble of preparations: [P — {(p@ ) ”37,)}

» Equivalent preparations:

{(Pi,Pi)} ~ {(1};P})}  ¢ommmp VM € M,Ym: ) piP(m|01,P;) =Y pjP(m|M,P))

J
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Ontological Models

MEP ( A) /// ”‘--.‘\\\\
/ ‘ Em(m|A)
Ontic space A= { )\} /,/
/
Ontic state A y // .
A
Preparation [P HP - A= R
P(m|M,P) = A A
Dehim )20 ) -1 () = 3= € x e )
AEA =
Measurement M {gm (m[)\)}
YA e A:&u(m|A) >0, Y &u(m|X) =1
k
Ensemble of _ P, — e
Preparations P ={(p:,Fs)} HP & Zp“w,,
‘ (2?Spekkens, PRA 2005)
Convex Linearity
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Experimental Data

Operational Theory Quantum Mechanics Ontolqggical Model
Preparation Density Operator Probability Distribution
P; pi 1
Measurement POVM Response functions
if {Fm} {&n(m|N)}
P(m|M,P;) = Tr(piFm) = ¥ &u(m|A) x pi(N)
AEA
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Preparation Contextuality

There are ensembles of quantum states described by the same density operator,
and hence operationally indistinguishable, and yet in the ontological model, they

[]-)
are described by distinct probability distributions. \/
v

Example: (10)40] + 1) (1) = 5 (I+)(+H + )1

DO | =
DD | =t

Preparation Non-Contextuality (PNC): Any two operationally indistinguishable scenarios
should have the same descriptions in the model.

A model is preparation contextual, if there are distinct ensembles of states which yield
the same average density operator, and yet in the model they are represented by
different probability distributions.

Po ~ Py <= o = s

Theorem: An ideal quantum-mechanical system cannot be described by a model satisfying PNC. (Spekkens 2005)
" Iy
In this talk:

“Preparation Contextual” M “Inaccessible Information”
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Total Variational Distance dry (e, ) = % Z lta (N) — (A

Preparation Non-Contextuality P, ~ Pp <— dTV (“a: U'b) =0 Assuming measurements have

finite number of outcomes

Definition: Inaccessible information of an ontological model

The largest distance between distributions associated to pairs of equivalent preparations

Cprep = Sup dTV(UJm Mb)

Py~Py
Chrep = sup dyy ( Zpi“i ; Zp;u;) Preparation
i j P,
where the supremum is taken over all pairs of {(pi, P;)} and {(p},P)} ’
satisfying the constraint Zpipi = ZP}P} / \
i ] Pi 24
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Inaccessible information 0 —
= sup d
of an ontological model prep P NIﬂ);b L (Ma” Mb)
Inaccessible information comin — pf O — inf sup d
= re P arv b
of an operational theory PED Models prep Models p_~ P (Ma’ )

where the infimum is taken over all ontological models of the operational theory

(A, {up:PeP},{&n:MeM})

Interpretation: In any ontological model that describes the operational theory, one can find two preparations that are
indistinguishable under all possible measurements, and yet, a hypothetical observer who can observe the ontic state A,
can distinguish them with probability of success (at least) equal to

1+ Cmin
2

(assuming the two preparations are given with equal probability). Furthermore, there exists a model for the
operational theory, such that the hypothetical observer cannot distinguish two equivalent preparations with probability
larger than this number.

: A
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Inaccessible information & —
= sup d
of an ontological model prep P NI['):,b i (MG” Mb)
Inaccessible information Cmin = 6t ¢ — inf sup d
= TV b
of an operational theory L Models prep Models p_~ P (Mm )

where the infimum is taken over all ontological models of the operational theory

(A, {pp:PeP},{&n:MeM})

Interpretation: In any ontological model that describes the operational theory, one can find two preparations that are
indistinguishable under all possible measurements, and yet, a hypothetical observer who can observe the ontic state 2,
can distinguish them with probability of success (at least) equal to

1+ Cmin

2

(assuming the two preparations are given with equal probability). Furthermore, there exists a model for the
operational theory, such that the hypothetical observer cannot distinguish two equivalent preparations with probability
larger than this number.

Model satisfies Preparation Non-Contextuality —H Cpmp =0
A

Pirsa: 21050007 Page 12/40




How about inequivalent preparations?

_ 1 Cprep — 0
dirace (Pas Pb) = §Hpa — poll1 dTV(Ha; Mb) =0 H dtrace(paa pb) =0

Trace distance in terms of equivalency relations: There exists density operators p’, and p’, such that

1 dtrace(ﬂaa pb) ! 1 dtracc(ﬂa: pb) .
+ = +
1 -+ dtrace (pa: pb) 4 B 1 + dtrace(Paa Pb) Fo

“ 1 + dtrace(paa pb)pa B 1 -+ dtrace(paa Pb)

dtrace(pa, pb) is the minimum value of r = 0 such that there exists density operators p’, and p’, satisfying

1 + B 1 "  l
r— — b A generalization of trace distance
1—|—?"pa 1-1—'rp“ 1+7‘p 1-|—'rpb 5 . . :
to all operational theories and a geometric
or, equivalently, Do — Py = r(pfa _ P;)) interpretation of trace distance.

IM, arXiv:2003.05984 [quant-ph]

The gap between the operational and ontological distinguishabilities:

Assuming p’, and p’, can be prepared in the operational theory

dTV(P'aa ﬂb) — dirace (Paa Pb)*ﬁ Cvprep[1 + dtracc(pa: Pb)] < 2Cprf:p
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For an ideal Quantum-Mechanical System, Inaccessible information is determined by the dimension of the Hilbert space.

Theorem: For the operational theory corresponding to an ideal quantum system with finite-dimensional

Hilbert space, the inaccessible information Cprep = inf Cpep = inf  sup drv(pa, ) satisfies
Models Models p_~p,

2— \/Q min
0.07 ~ ==Y= < i < 1

Furthermore, in the case of a single qubit, C;,”,.i’; <0.5.

Proofs:

1) The upper bound C{,‘;L‘I', < 1 can be proven using an ontological model introduced by of Aaronson et al. and

Lewis et. al in which non-orthogonal pure states are described by overlapping probability distributions.

. 3
2) The upper bound C™I < 1/2 inthe qubit case can be shown using an ontological model introduced by

prep —
® Kochen and Specker (1975).
2— 2

3) The lower bound C;i’;, > 5 ~ 0.07 is established using a family of guessing games.

IM, arXiv:2003.05984 [quant-ph]
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Let A be the set of all ontic states that have non-zero probability for some quantum states. Assume A is a finite set.

Claim 1: PNC implies that for any mixed state p the corresponding probability distribution should have full support in A.

A
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A new proof of
Preparation Contextuality of QM




Let A be the set of all ontic states that have non-zero probability for some quantum states. Assume A is a finite set.

Claim 1: PNC implies that for any mixed state p the corresponding probability distribution should have full support in A.
For any A € A there is a density operator o, such that A € Supp(u,) -
Since p has full support, there exists p > 0 and density operator p’, such that

p=po+(1—p)p
PNC: tp(A) = ppo(A) + (1 — p)py ()

pe(A) >0 = p,(A) >0
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Let A be the set of all ontic states that have non-zero probability for some quantum states. Assume A is a finite set.

Claim 1: PNC implies that for any mixed state p the corresponding probability distribution should have full support in A.
For any A € A there is a density operator o, such that A € Supp(u,) -
Since p has full support, there exists p > 0 and density operator p’, such that

p=po+(1—p)p
PNC: tp(A) = ppo(A) + (1 — p)py ()

pe(A) >0 = p,(A) >0

Claim 2: PNC implies that for any ontic state A € A, there is, at most, one pure state U, such that y, =1k

Claim 3: PNC implies that a qubit cannot have more than one pairs of perfectly distinguishable states, in contradiction with QM

Consider two sets of orthonormal states {|v}, |1/)L>} and {|¢), |<;5J‘)}
ForanyA € A

A A) >0 ey At most, one pair of perfectly
#w(/\)ﬂw (A) >0 . MQS( )u(w—( ) distinguishable states.
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Let A be the set of all ontic states that have non-zero probability for some quantum states. Assume A is a finite set.

Claim 1: PNC implies that for any mixed state p the corresponding probability distribution should have full support in A.
For any A € A there is a density operator o, such that A € Supp(u,) -
Since p has full support, there exists p > 0 and density operator p’, such that

p=po+(1—p)p
PNC: tp(A) = ppo(A) + (1 — p)py (A)

po(A) >0 = p,(A) >0

Claim 2: PNC implies that for any ontic state A € A, there is, at most, one pure state U, such that py, O =1k
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A new family of
non-contextuality inequalities from guessing games
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A guessing game
k M,

Alphabet Message
Preparation U:'(k.a;)EP, k=1,---,n; z=1,---,d [P(k :E) /74 y
i ?
Measurement M € M, k=1 we oy

Alice Bob

Alice chooses alphabet k=1, ..., n and message x=1,..., d uniformly at random and independent of each other.
She reveals k£ to Bob and asks him to guess x. Bob performs a measurement and obtains outcome y. He wins if

y=x, i.e., his guess coincides with Alice's choice, which happens with probability

1 T
* P = 2 % 32 3 Py = 2l P )

k=1 ==1
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Example:
If Bob measures Z for k=1 and measures X for k=2, then he wins with probability 1. ,
- k=1, x=1
1
Poyess = 7 X ZP(y :35'|Mka[P(k,:c))
k=1 z=1
k=2, x=2 k=2, x=1
k

k=1, x=2
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Consider an arbitrary ontological model for this operational theory. lP(k z)

H(k,x)

Pguess= XZ ZP —x‘Mka[P(kx))

=1 z=1
LN 1 1
= Z a Zé[ﬂk (@[ Mbe,z)(A) < - Z p meaxﬂf(k,a:)()‘) = d ngxux()\)
k=1 z=1 X /‘ A k=1 A
d 1
Y tu@A) =1 pea(N) < maxpga) () =0 Ek:”‘”“*‘”“ |
=1 X:Z‘l,"',mne{la"'ad}n

. 1 d—1 .
Pguess < min {E E)\:m,?’x .U'x()‘)a L= 4 Z)\:mxlnﬂ’x()\)}

1 n
X
PA= D Pk
1 n =
Ensemble Py = {(E:P(k,xk)) k=1, :n} / k=1

1
X=2=1, - ,8n € {1,-+-,d}" \ “"ZEZ“U%%)‘
k
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1 — n
Ensemble {(E,[P(mk)):kzl,...,n} X=2g, &, €{1,- ,d}

Example:

(X AX™ + 272 =)(—12"2) 21,2, € {1,2}

DN | —

Prizs =
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Pyess < min { Z max Ex(A Z min ;_Lx()\)}

1 T n
Ensemble {(aaﬂp(k,mk))!kzl,---,n} K=y, <oviy @y € {1, wes )

Example:

(X=X + Z272|=)(=12"2) 21,25 € {1,2}

l\.')l»—t

Pﬂhmz _

k=2, x=2 - 5 k=2, x=I

guess > Zmax {IJ/I ] fJ’] 2 MZJ(’\*):FLZ?(/\)}

1 :
Poyess < 1 — 9 Z min {ﬂl,l()‘)aﬂlﬁ(/\)a p2,1(A), H2,2(A)}
A
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(10)(0] + |+){+])

Do | =
I

=
|

P1,1 =
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p1,1 =

Pzizo =

1 2.1 2 PNC B V2 V2,

L1001+ 194D = (= YD £ Lo, o — pa= (=

1 T T To To \/§ 1 \/§ PNC 2(1_ Q)y_}__? !

g (XTIAXT 4 Z21)(127) = (1= )5 + 5 oreadrs| —— Hoom TO T F Tyt
z1,%2 € {1,2}
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1, : ; : I
Pzizs = §(X£l|1><1‘X‘El + Z£2|_>(_|Z£2) = (1 - \/_)2 |¢r1 rg)<¢r1 rzl I1,T2 € {112}
PNC V2 V2 |
—— Haya = (1— 7)” o 7#;1,9;2 k=2,x=2 |

fenea ) 2 (1= L)

1 PNC

The inequality imposed by PNC is violated in QM.
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A
[~ 1) sy .
=2, x=2 & k=2, x=I

\/5
guessgl Zﬁlﬂgﬂml ) _1__2(1_— V(A PNC

1) P
P < mi d—1 Zmin (,\)} k=1, x=1
guess > d = Hix Py,
A ol 0y )
Lle N\
I 2 V2 L EN
= QR S T ol k=2, x=2 | o k=2,x=1
2= 91 \/5,01,1 91 ﬂ\¢2,2>(¢2,2|
|¢‘>2,2}.‘\ S 'R
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k=1, x=1
1 R é11)
Pyess < min {& ;msx fx( ) |0) Y /,\
k=2, 52 f— / e k=2, x=I
1 , 1 V2 2+ /2 "
Prrogs £ 1 = 5 Zﬁlﬂg jr—— 5 ;(1 — 7)1/()\) — i PNC ]
: d—1 3 k=1, x=I
Pas < i ),
Llg
I 2 V2 L] i
e 4+ — k=2, x=2 4 > k=2, x=1
1= 0= \/5,01,1 o ﬂ\¢2,2>(¢2,2| '=. ]

9 V2 |p2,2) S 1)

v = +
9+ \/Eﬂfl,l 5+ \/5#2,2 PNC
2 ) 1 2+ 82
p1,1(A) < 5 209 Pyuess < 3 E,\ A iy, 4y (V) € = PNC
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Generalization: Minimizing the maximum “distance”

! 1
Pguessgmln{ggm;?xux( 1_72111111“3( }

We find the preparation with the maximum “overlap” with preparations

1
[F)X = {(Eau:(k,mk)) : o= 1, ,?’L} X =1, " ,3)”6{1,--- ?d}n

In other words, we find the preparation that has the minimum of the
maximum “distance” with these preparations.
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Theorem: If PNC holds, i.e., if Cprep = 0, then

i & . O Bl ..
Pgucss = H X Z Zp(y = $|Mk, I]D(k’l)) = HllIl{ Zm,l — d Bmi}l}
k=1 z=1
o = inf 9Dmax (Px [P )
where @ Prep x ’ Preparation radius
Brmin = [Pifnefp max 2Dmax(PlIPx)

and

1
[PX = {(ﬁnp(k,xk)) k= 1'.! ;n} X=T, - ,$n€{1,"‘ ?d}n

Qubit Example:  d=2 (Binary guessing games) ;. — Lok n(;“”) i % SN e = g
k T
I B " 1
= g ;n(k,mk} *e {1,2} Omin = 1+ IIl;lX an” mein - 1 — maxy ||ﬁxH
. -
P 1 + maxy ”nx” _ Omin 1 1 —1
guess = 2 _ 2 D T 5 min
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PNC inequality with 8 preparations PNC inequality with 6 preparations PNC inequality with infinite states
1 : 3 _
Pguess < b2, Bl ~0.85 Payess < L/ LN Y 0.83 Qubit: Fouess < 3 =075
2 4 2 6
This bound was previously found in Mazurek et al. Qudit CP: Popess < %(1 + % 4+ 4+ %)
NCOMM 2016 (Assuming both PNC and MNC).
k=1, x=1
1,2} o) 1,1} k=1, x=1 -
N
; | |
2,2} f"‘l
\\ - //
k=1, x=2
Qubit Example: d=2 (Binary guessing games) I+ A,z - & S >N _ !
pie: = Y8 88 P(k,z) = 9 D P(k,z) = 2
k T
1 «— 1
Mg = — n x € {1,2}" Qmin = 1 + max ||n in = -
X n ; (k,-’llk) { ’ } min = “ X” Bmm 1 . ma.Xx ||an
P 1 + maxy ”nx” _ Omin 1 1 —1
ess = = — S i
gu 9 2 9 “'min
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Theorem:

where

and

1 n
Pyuess = — ¥ Z ZP(@/ = $|Mk,”3(k,m)) satisfies

nd
=1 z=1
= d (1+ prep X )

d=1 ..
Pguess<1— 1

- T min

+ (d — 1)@(””_1 % (min

prep

Co=: inf sup dTV()u'mﬁb)

prep Models P,~P,
amm = inf max 2|Dmax(|PxH|Pf) . ' -
RasEE Preparation radius
Bmin = inf max 20ma(PslPx)
PreP x
1
IPX ={(£’I]D(k’xk)) k= 1’ !'ﬂ’} X=21," " ,Tp € {1,

)
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1 n
Theorem: Pguess = a X Z ZP(’!J — $|Mk, ﬂb(k,m)) satisfies

k=1 z=1

Pgucss " C¢min (1 + Cmin X dn) 1

=" prep
d—1 -1 1 —1 min
Pguess e T min < (d - 1)d? X Cprep
C™r = inf sup d
where pep = inf, - sup. 7v(Has Hb)
and Omin = inf  max 20ma(PxlIPs)
F;eP x Preparation radius
n = inf max 20m(PslIPx)
Bmm Ffe'P i
1 T
P ={(H,IP(;€M)) rk=1,-- ,n} X=2xy, - ,ZTy €{1,---,d}
k=1, x=1
|Uld> T 0) (9]_\}
\ ijn>i|:dxpgucss_1}:i[Pguess_l}
Prep = Clmin dn Pg}?iscs e
el i __ pPNC . D s
Cmin > PBU*:SS - (1 - Tﬁmm) _ Pguess Pguess ; C‘;H,:L > f ~ 0.07k Ifaai

prep = (d—1)dn! - (d—1)d"1 8
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Noise Thresholds for Contextuality

A=

Ideal Measurement

I
I
I
!

Ideal Preparation Noise Channel

Preparation in the operational theory

deal Preparations Preparations in the operational theory
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F(€) = /dn MIE(n) (n))|n) Average Gate Fidelity

Average gate fidelity can be interpreted as the probability of success in a guessing game, where the alphabet (basis) is
chosen according to Haar measure.

d PNC Qipin = |P]..I'g;D max QDmax(Px”[Pf) ;
: 3 i d—1 f x

PO = P = g 7 2 2 Pl = ol Pon) <minf 5321 = S5m0l Bin = inf max 20w (F71P)
k=1 z=1 i 4

If the noise channel is an invertible function, then it does not change the equivalency relations of the operational theory.

k
o1 = 2001+ ) = 0= Y%+ Lig )
(o) = SEDO) + £ = (- Y2IE(h) + e 0014

Ideal Preparations Noisy Preparations
[Dmax([Paa [Pb) - [Dmax(IP;a [P!b)

Dmax(pa: pb) - Dmax(P:;” p;))
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1 n
Theorem: Pguess = ﬁ X Z ZP(’!J — x|Mk7 iP(k:,:r)) satisfies

k=1 z=1

Pgucss B C¥min (1 + Cmin X dn) :

=" prep
d—1 -1 —1 min
Pguess =2 L= T min T (d - 1)d? X Cprep
where  Cp,, = inf S drv(tha; o)
and Oin = inf  max 20ma(PxlPs)
P;EP x Preparation radius
n = inf max 20m(PslIPx)
ﬁmm IF e’P o
F
|P 1 n
X ={(H1P(k;&“k)) k= R :n} X=1T1, " ,Tn € {1:"‘ ,d}
k=1, x=1
|1 ,2) o d1,1)
omin > il:dxpgucss _1} _ i Pguess _1}
prep — dr Clmin dan Pgl::ll'gg o L
d—1 n—1 PNC . — :
cmin > Pgucss e (1 = T/Bmm) _ Pguess - Pguess C‘;"";’.‘U 2 \/Q ~ 0.07 (92,2}

prep = (d—1)dn! - (d—1)dn1 8
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Theorem: For a system with Hilbert space of dimension D D u

B 1 1 1 s The operational theory is
HE)= /dn A 5(1 dg et 5) preparation contextual.

I
Example: Depolarizing channel £(p) = (1 —p)p +p5

D—[1+---+D71]

< — Not PNC
= B
D :
p = D+1 7 PNC + MNC <—> Entanglement-Breaking
The bound is tight in the qubit case.
' PC PNC+MNC
D | + 1 |
0 12 1
2 3
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Summary

Non-contextuality inequalities based on guessing games

1 = d S mi d— 1 = Qpin = inf mfx 2|D ax(Px ”[Pf) ‘I'i am'" [Pf L] |
Payess = i X ; ;P(@‘ = ;B‘M;ﬂ, ﬂj(k’m)) < min{ mm,l - ﬁmin} PreP

n = inf max 20m(PslIPx)
Bumin [F’]an'P mx \

Inaccessible information

nin = f y P 2- \/E min
Crep A;(JI}MS [Psgléb drv(ttas 146) 0.07 ~ : 2002 <
dTV(;uaa Jub) - dtrace(paa .Ob) < Cprep[l + dtrace(pm .-Ob)] < 2C’prep
dx P, 1 P, Poa— (1= =030y Plg PR
len guess - 1 — guess s 1 min Zuess d min = g guess
Prep = gn [ Q¥min ] dn [P;&;}IES ] Corep = (d—1)dn—1 (d—1)dn—1
Noise thresholds for contextuality

88—
Preparation Contextual if the Average Gate Fidelity is larger than

Ideal Preparation Moise Channel Ideal Measurement

1 1 1 PC
FE) > 5145+ +5)

PNC+MNC
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