Title: Jordan algebras: from QM to 5D supergravity to †Standard Model?

Speakers: Paul Townsend

Collection: Octonions and the Standard Model

Date: May 03, 2021 - 12:00 PM

URL: http://pirsa.org/21050003

Abstract: This talk will be about two applications of Jordan algebras. The first, to quantum mechanics, follows on from the talk of John Baez. I will explain how time dependence makes use of the associator, and how this is related to the commutator in the standard density matrix formulation.

The associator of a Jordan algebra also determines the curvature of a Riemannian metric on its positive cone, invariant under the symmetry group of the norm (mentioned in the talk of John Baez); the cone is foliated by hypersurfaces of constant norm. This geometry is relevant to a class of N=2 5D supergravity theories (from the early 1980s) which arise (in some cases, at least) from Calabi-Yau compactification of 11D supergravity. The 5D interactions are determined by the structure constants of a euclidean Jordan algebra with cubic norm. The exceptional JA of 3x3 octonionic matrices yields an ``exceptionalâ€TMâ€TM 5D supergravity which yields, on reduction to 4D, an ``exceptionalâ€TMâ€TM N=2 supergravity with many similarities to N=8 supergravity, such as a non-compact global E7 symmetry. However, it has a compact `compositeâ€TM E6 gauge invariance (in contrast to the SU(8) of N=8 supergravity). An old speculation is that non-perturbative effects break the N=2 supersymmetry and cause the E6 gauge potentials to become the dynamical fields of an E6 GUT. Potentially (albeit improbably) this provides a connection between M-theory, the exceptional Jordan algebra, and the Standard Model.

Jordan algebras: from QM to 5D supergravity to ... Standard Model?

Paul K. Townsend

University of Cambridge

- Part 1. JA and QM. Time dependence [Follow-up to John Baez talk]
- Interlude. Geometry of JA cones. $H_3(\mathbb{O})$ case.
- Part 2. 5D Maxwell-Einstein supergravities. H₃(○) case. Reduction to 4D. Composite E6 GUT? Günaydin, Sierra, PKT, '83-'85]

Jordan formulation of QM: observables I

A QM observable is an element of a 'formally real" (aka "Euclidean") Jordan algebra *J* with identity element. Some properties:

- Jordan identity is equivalent to power-associativity. In particular, the exponential map is defined; this takes $J \to \mathscr{C}(J) \subset J$, the positive convex cone of J.
- Every J is a direct sums of simple Js
- For simple J with identity e₀, we can choose basis
 {e₀, e_i; i = 1, ..., n} such that

 $e_0 \circ e_0 = e_0$, $e_0 \circ e_i = e_i$, $e_i \circ e_j = \delta_{ij} e_0 + T_{ijk} e_k$

where T_{ijk} is totally symmetric.

• Automorphisms: $Aut(J) \subset SO(n)$ for which T_{ijk} is invariant tensor.

The Norm

We may view J as (n + 1)-dimensional Euclidean space, and $\mathscr{C}(J)$ as a subspace. The characteristic function ω of $\mathscr{C}(J)$ is defined by

$$\omega^{-1}(x) = \int_{\mathscr{C}(J)} e^{-\operatorname{tr}(x \circ y)} d^{n+1} y \qquad (x = x^{\prime} e_{\prime} \equiv x^{0} e_{0} + x^{\prime} e_{\prime})$$

Notice that $\omega(Ax) = (\det A)\omega(x)$ for automorphism $x \mapsto Ax$ of cone: $\Rightarrow \omega(x)$ is homogeneous of degree n + 1. For $\mathscr{C}(J)$,

$$\omega^2(x) = [\mathscr{N}(x)]^{2(n+1)/\nu}$$

for homogeneous polynomial $\mathcal{N}(x)$ of degree $\nu \in \mathbb{N}$, called the norm

▶ \mathcal{N} is invariant under automorphisms of $\mathscr{C}(J)$ with det A = 1. These form the reduced structure group: $Str_0(J) \supset Aut(J)$

Classification of simple Euclidean Jordan algebras

• $\nu = 1$: $J = \mathbb{R}$.

• $\nu = 2$: J = J(Q). In this case $T_{ijk} = 0$, so $\operatorname{Aut}(J) = SO(n)$. Norm is $Q = x_0^2 - |\mathbf{x}|^2$, so $\operatorname{Str}_0 = SO(1, n)$.

Viewing Q as Minkowski metric, C(J) is positive light-cone

ν = 3: J = ℍ₃(𝔅), i.e 3 × 3 hermitian matrices over 𝔅 = ℝ, ℂ, ℍ, Ο.
 For H ∈ ℍ₃(𝔅), cubic norm is

$$\mathscr{N} = \det H \qquad \Rightarrow \operatorname{Str}_0 = \left\{ \begin{array}{cc} SI(3;\mathbb{K}) & \mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H} \\ E_{6(-26)} & \mathbb{K} = \mathbb{O} \end{array} \right.$$

• $\nu > 3$: $J = H_n(\mathbb{K})$ for $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$, [det not defined for $\mathbb{K} = \mathbb{O}$]

The Trace

We can introduce a "trace-form" with the property that

 $\operatorname{tr}(e_i) = 0, \qquad \operatorname{tr}(e_0) = \nu \in \mathbb{N}$

Relation to matrix trace:

ν = 2. Trace is matrix trace for realization by generalized Pauli matrices [of dimension N(n); e.g. N(3) = 2]

$$(e_0, e_i) \rightarrow \frac{2}{N}(\mathbb{I}_N, \sigma_i), \qquad x \circ y \rightarrow \frac{N}{4}\{x, y\}$$

• $\nu = 3$. Trace form is matrix trace for realization as 3×3 hermitian matrices with $x \circ y \rightarrow \frac{1}{2} \{x, y\}$

シック・ 叫 《山》 《山》 《山》 《日》 (日)

Jordan formulation of QM: states I

To understand states we need the primitive idempotents:

$$P^2 = P$$
 (idempotent), $tr P = 1$ (primitive)

 (P_1, P_2) are orthogonal if $P_1 \circ P_2 = 0$. There are at most ν mutually orthogonal primitive idempotents, and any such set provides a decomposition of the identity: $e_0 = P_1 + \cdots + P_{\nu}$. For example

• $\nu = 2$. $P_{\pm} = \frac{1}{2}(e_0 \pm e_1)$ is one of many possible choices

• $\nu = 3$. for 3×3 matrix realization, one obvious choice is

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Jordan formulation of QM: states II

Any observable *a* can be written as

$$a = \sum_{\alpha=1}^{\nu} a_{lpha} P_{lpha}(a)$$

for some set $\{P_{\alpha}(a)\}$ of mutually orthogonal primitive idempotents and real coefficients a_{α} . This theorem has the following interpretation:

• the elements $P_{\alpha}(a)$ correspond to eigenstates of a

• the coefficients a_{α} are the corresponding eigenvalues.

As expected, 'eigenstates' are unique only if 'eigenvalues' are distinct.

► Every primitive idempotent is a pure state.

・ロト・日・・ヨト ・ヨト ・日 うへぐ

Jordan formulation of QM: mixed states

A generic normalized mixed state can be represented by

```
ho \in \mathscr{C}(J)\,, \qquad {
m tr}
ho = 1
```

The state is pure iff $\rho^2 = \rho$; these are extremal (and hence boundary) points of $\mathscr{C}(J)$. The expectation value of observable *a* in the state ρ is $\langle a \rangle_{\rho} = \operatorname{tr}(a \circ \rho)$.

This is essentially the density matrix formulation of QM, except that there is no obvious analog of the Heisenberg equation of motion

 $\dot{\rho} = -i[H, \rho]$ ($\rho = \text{density matrix}, H = \text{Hamiltonian}$)

because the RHS is not defined for $\rho \in J$.

▲ロト▲昂ト▲臣ト▲臣ト 臣 めへぐ

Jordan formulation of QM: time dependence I

For the time evolution to take a pure state into another pure state we need $\dot{\rho} = D(\rho)$ for some derivation D of J. All derivations of a Jordan algebra take the form

$$D_{x,y} = [L_x, L_y]$$
 $(L_x = \text{left multiplication by } x \in J)$

but

$$[L_x, L_y]\rho = x \circ (y \circ \rho) - y \circ (x \circ \rho) = x \circ (\rho \circ y) - (x \circ \rho) \circ y$$

which is the associator of ρ with x and y, so $\dot{\rho} = \{x, \rho, y\}$ [Nambu]

▶ Notice invariance under the combination of $t \rightarrow -t$ and $x \leftrightarrow y$.

Paul K. Townsend (Univ. of Cambridge) Jordan algebras: from QM to 5D supergravity "Octonions & SM" workshop, 3 May '21

Jordan formulation of QM: time dependence II

For a matrix realization of J with $x \circ y = \frac{1}{2} \{x, y\}$, we have

$$\dot{
ho} = rac{1}{4} \left[[x, y],
ho
ight] \, .$$

For complex Hermitian matrices we recover the Heisenberg equation via the identification

$$H = H = \frac{i}{4}[x, y] + \lambda \mathbb{I}, \qquad (\lambda \in \mathbb{R})$$

A simple example

Take J to be the algebra of 2×2 hermitian matrices with basis $\{\mathbb{I}_2, \sigma_x, \sigma_y, \sigma_z\}$, and choose $(x, y) = (\sigma_x, \sigma_y)$ to get

$$\dot{\rho} = \{\sigma_y, \rho, \sigma_x\} = -i[H, \rho], \qquad H = \sigma_z/2$$

i.e. Hamiltonian for a spin- $\frac{1}{2}$ particle in a uniform magnetic field

Geometry of $\mathscr{C}(J)$: I

By homogeneity of \mathcal{N} , the dual (n + 1)-vector $x_l^* = \nu^{-1} \partial_l \ln \mathcal{N}(x)$ satisfies

$$x'x_{l}^{*}=1$$

Differentiating we deduce that

$$x_{I}^{*} = h_{IJ}(x) x^{J}$$
, $h(x) = -\nu^{-1} d^{2} \ln \mathcal{N}(x)$

The metric *h* is positive, so $\mathscr{C}(J)$ is a self-dual cone. Every vector in $\mathscr{C}(J)$ has its dual vector in \mathscr{C} , except the basepoint $x = e_0$, which is its own dual since

$$h_{IJ}(x) = \delta_{IJ} \Leftrightarrow x = e_0.$$

The curvature of h at the basepoint is given by the associator of J:

$$\{e_I, e_K, e_J\} = R_{IJK}{}^L(e_0)e_L \qquad (*)$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Geometry of $\mathscr{C}(J)$: II

The cone $\mathscr{C}(J)$ is foliated by scaled copies of the symmetric space

$$\mathscr{M}(J) \equiv \mathscr{C}(J)\big|_{\mathscr{N}=1} = \mathrm{Str}_0(J)/\mathrm{Aut}(J)$$

• $\nu = 2$. $\mathcal{M} = SO(1, n)/SO(n)$ (a maximally symmetric space)

•
$$\nu = 3$$
, e.g. $\operatorname{H}_3(\mathbb{O})$. In this case $\mathcal{M} = E_{6(-26)}/F_4$.

The only non-zero components of $R_{IKJL}(e_0)$ are [from (*)]

$$R_{ijkl} = \delta_{k[i}\delta_{j]l} + T^{m}{}_{k[i}T_{j]lm}$$

This is curvature tensor (at basepoint) of metric on $\mathcal{M}(J)$ induced by h.

▲□▶▲□▶▲□▶▲□▶ □ りへで

Jordan formulation of QM: time dependence II

For a matrix realization of J with $x \circ y = \frac{1}{2} \{x, y\}$, we have

$$\dot{
ho} = rac{1}{4} \left[[x, y],
ho
ight] \, .$$

For complex Hermitian matrices we recover the Heisenberg equation via the identification

$$H = H = \frac{i}{4}[x, y] + \lambda \mathbb{I}, \qquad (\lambda \in \mathbb{R})$$

A simple example

Take J to be the algebra of 2×2 hermitian matrices with basis $\{\mathbb{I}_2, \sigma_x, \sigma_y, \sigma_z\}$, and choose $(x, y) = (\sigma_x, \sigma_y)$ to get

$$\dot{\rho} = \{\sigma_y, \rho, \sigma_x\} = -i[H, \rho], \qquad H = \sigma_z/2$$

i.e. Hamiltonian for a spin- $\frac{1}{2}$ particle in a uniform magnetic field

5D Maxwell-Einstein Supergravity I

Omitting fermions, the susy multiplets are

- Graviton multiplet: (metric g + one-form potential A^0)
- Maxwell multiplets: $(A^i + \text{ scalars } \varphi^i)$ (i = 1, ..., n)

These combine to

$$(g; A'; \varphi^i) \qquad (I=0,i)$$

The scalars map spacetime to some *n*-dimensional target space \mathcal{M} . The Lagrangian 5-form includes

$$L = \cdots - \frac{1}{2} \left[h_{ij}(\varphi) d\varphi^{i} \wedge * d\varphi^{j} + h_{IJ}(\varphi) F^{I} \wedge * F^{J} \right] + C_{IJK} A^{I} \wedge F^{J} \wedge F^{K}$$

where F' = dA', and C_{IJK} are constants

Paul K. Townsend (Univ. of Cambridge) Jordan algebras: from QM to 5D supergravity "Octonions & SM" workshop, 3 May '21

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● つくぐ

Geometry of $\mathscr{C}(J)$: II

The cone $\mathscr{C}(J)$ is foliated by scaled copies of the symmetric space

$$\mathscr{M}(J) \equiv \mathscr{C}(J)\big|_{\mathscr{N}=1} = \mathrm{Str}_0(J)/\mathrm{Aut}(J)$$

• $\nu = 2$. $\mathcal{M} = SO(1, n)/SO(n)$ (a maximally symmetric space)

•
$$\nu = 3$$
, e.g. $\mathrm{H}_3(\mathbb{O})$. In this case $\mathcal{M} = E_{6(-26)}/F_4$.

The only non-zero components of $R_{IKJL}(e_0)$ are [from (*)]

$$R_{ijkl} = \delta_{k[i}\delta_{j]l} + T^{m}{}_{k[i}T_{j]lm}$$

This is curvature tensor (at basepoint) of metric on $\mathcal{M}(J)$ induced by h.

▲□▶▲□▶▲□▶▲□▶ □ りへで

5D Maxwell-Einstein Supergravity I

Omitting fermions, the susy multiplets are

- Graviton multiplet: (metric g + one-form potential A^0)
- Maxwell multiplets: $(A^i + \text{ scalars } \varphi^i)$ (i = 1, ..., n)

These combine to

$$(g; A'; \varphi^i) \qquad (I = 0, i)$$

The scalars map spacetime to some *n*-dimensional target space \mathcal{M} . The Lagrangian 5-form includes

$$L = \cdots - \frac{1}{2} \left[h_{ij}(\varphi) d\varphi^{i} \wedge * d\varphi^{j} + h_{IJ}(\varphi) F^{I} \wedge * F^{J} \right] + C_{IJK} A^{I} \wedge F^{J} \wedge F^{K}$$

where F' = dA', and C_{IJK} are constants

Paul K. Townsend (Univ. of Cambridge) Jordan algebras: from QM to 5D supergravity "Octonions & SM" workshop, 3 May '21

5D Maxwell-Einstein Supergravity II

Let ξ^{I}_{\circ} be cartesian coordinates for \mathbb{R}^{n+1} and define $\mathscr{N} = C_{IJK}\xi^{I}\xi^{J}\xi^{K}$. Let φ^{i} be coordinates for $\mathscr{N} = 1$ hypersurface. Then $(\mathscr{N}, \varphi^{i})$ are coordinates for a convex cone with metric $\propto -d^{2} \ln \mathscr{N}$

- $h_{ij}(\varphi)$ is pullback to $\mathcal{N} = 1$ hypersurface of cone metric
- $h_{IJ}(\varphi)$ is restriction to $\mathcal{N} = 1$ hypersurface of cone metric

Pullback of C_{IJK} yields target space symmetric tensor $T_{ijk}(\varphi)$, but compatibility of 5D susy and constancy of C_{IJK} requires

$$T_{ijk;l} = g_{(ij}g_{k)l} - 2T_{(ij}{}^{m}T_{k)lm} \Rightarrow |R_{ijkl} = g_{k[i}g_{j]l} + T_{k[i}{}^{m}T_{j]lm}$$

► When T_{ijk} is covariantly constant it equals (at the basepoint) the reduced structure constants of a Jordan algebra with cubic norm \mathcal{N}

しょう 聞 ふばをえばや 予見や ふしゃ

The exceptional $H_3(\mathbb{O})$ case

The 'exceptional' 5D Maxwell-Einstein supergravity associated to $H_3(\mathbb{O})$ has scalar-field target space

$$\operatorname{Str}_0(J)/\operatorname{Aut}(J) = E_6(-26)/F_4$$

The non-compact E_6 symmetry group acts linearly, and irreducibly, on the abelian 1-form potential A^I , I = 1, ..., 27.

M-theory origin via Calabi-Yau compactification?

CY compactification of 11D to 5D supergravity gives

$$C_{IJK} = \int_{CY} \Omega_I \wedge \Omega_J \wedge \Omega_K$$

where $\{\Omega_I; I = 0, ..., n\}$ are harmonic (1,1) forms (Ω_0 is Kahler 2-form). Is there a CY manifold that gives the exceptional 5D sugra?

Paul K. Townsend (Univ. of Cambridge) Jordan algebras: from QM to 5D supergravity "Octonions & SM" workshop, 3 May '21

ヘロマ 人間マ 人間マ 人間マ

3

5D Maxwell-Einstein Supergravity I

Omitting fermions, the susy multiplets are

- Graviton multiplet: (metric g + one-form potential A^0)
- Maxwell multiplets: $(A^i + \text{ scalars } \varphi^i)$ (i = 1, ..., n)

These combine to

$$(g; A'; \varphi^i) \qquad (I=0,i)$$

The scalars map spacetime to some *n*-dimensional target space \mathcal{M} . The Lagrangian 5-form includes

$$L = \cdots - \frac{1}{2} \left[h_{ij}(\varphi) d\varphi^{i} \wedge * d\varphi^{j} + h_{IJ}(\varphi) F^{I} \wedge * F^{J} \right] + C_{IJK} A^{I} \wedge F^{J} \wedge F^{K}$$

where F' = dA', and C_{IJK} are constants

Paul K. Townsend (Univ. of Cambridge) Jordan algebras: from QM to 5D supergravity "Octonions & SM" workshop, 3 May '21

▲□▶▲□▶▲□▶▲□▶ □ つんで

Reduction from 5D to 4D

Bosonic fields are now

- Spacetime metric g,
- (n+2) Abelian 1-forms (A', A)
- n + 1 complex scalars Z^i

Scalar field target space is now "Koecher half-space" $\mathscr{D} = J + i\mathscr{C}(J)$, with Kähler metric derived from Kähler potential $\ln \mathscr{N}(Z - \overline{Z})$. It is the coset space

 $M\ddot{o}(J)/\widetilde{Str}(J)$ (tilde indicates compact form)

where $M\ddot{o}(J)$ denotes the Möbius group of J. For example

- For $J = H_2(\mathbb{O})$: Mö(J) is conformal group in D = 10
- For $J = H_3(\mathbb{O})$: $M\ddot{o}(J) = E_{7(-25)}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Composite E_6 GUT conjecture

For $J = H_3(\mathbb{O})$ we get 'exceptional' N = 2 4D sugra with target space

 $E_{7(-25)}/[E_6 \times U(1)]$ (cf $E_{7(7)}/SU(8)$ for N = 8 sugra)

Linear realization of $E_{7(-25)}$ requires $E_6 \times U(1)$ gauge invariance but gauge fields are composite.

Popular in early 80's was suggestion that composite SU(8) gauge fields of N=8 sugra become dynamical but not easy to get phenomenologically plausible GUT.

A further suggestion from 1984 (but not pursued!) was for dynamical $E_6 \times U(1)$ in 'exceptional' sugra. It was also observed that this sugra 'contains' another "octonionic" one (related to Jordan triple system)

 $E_{6(-14)}/[{
m Spin}(10) imes U(1)]$

・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ う へ ()・

Reduction from 5D to 4D

Bosonic fields are now

- Spacetime metric g,
- (n+2) Abelian 1-forms (A', A)
- n + 1 complex scalars Z^i

Scalar field target space is now "Koecher half-space" $\mathscr{D} = J + i\mathscr{C}(J)$, with Kähler metric derived from Kähler potential $\ln \mathscr{N}(Z - \overline{Z})$. It is the coset space

 $M\ddot{o}(J)/\widetilde{Str}(J)$ (tilde indicates compact form)

where $M\ddot{o}(J)$ denotes the Möbius group of J. For example

- For $J = H_2(\mathbb{O})$: Mö(J) is conformal group in D = 10
- For $J = H_3(\mathbb{O})$: $M\ddot{o}(J) = E_{7(-25)}$