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Abstract: | will talk on experiments and their interpretation done with Professor Lei Shu and her collaborators at Fudan University, Shanghai, and
some tentative theory for the observations.&nbsp; Thermodynamic and magnetic relaxation measurements in zero and finite magnetic field have
been performed in two related aimost triangular lattices of S=1/2 spins. One of these compounds is the purest of any of the potential spin-liquid
compounds investigated so far. All its measured properties are extra-ordinary and characterized simply by just one parameter, the exchange energy
obtained from susceptibility measurements. There are also colossal ultra-low energy singlet excitations. This may be the first characterization of the
intrinsic properties of a class of spin-liquids.& nbsp; An ansatz in which the excitations are calculated from a state of singlet-dimers interacting with
excitations from other such singlets can be expressed in terms of Magjoranas and gives properties similar to those observed.
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Experiments:

Chandra Varma

Discovery of an ultra-quantum spin-liquid
Sy

arXiv:2102.09271

Y. X. Yang, C. Tan, Z. H. Zhu, J. Zhang, Z. F. Ding, Q. Wu, C. S. Chen T. Shiroka,
D. E. MacLaughlin, C. M. Varma, L. Shu

Spin-liquids are an example of what happens to a field when theory is done
without firm experimental data to serve as a guide and a filter.

Experiments that I will talk about reveal the intrinsic behavior of a class of spin-liquids.

One can characterize its low energy scale-invariant fluctuations.
Also colossal ultra-low energy singlet fluctuations.

A new ansatz for spin-liquids suggested by the experiments.
Theory done with H.R. Krishnamurthy - IISc, Bangalore.
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Structure

Kagome layers of Lu and of Sb, with Zn or Cu in hexagonal sites of the Kagome
forming (triangular lattices with up to 3% distortions.) :
Lu3 ZnoSb3014: Non-magnetic
LU3 C’UQ Sbg 014
L’LL3 ZnC’qu3014
Y

Detailed Hamiltonian not know but is it magnetically two-dimensional?
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Uniform Magnetic Susceptibility

Chandra Varma
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In LSCO, "orphan” spins < 103 about 1% Schottky impurities

9W1 ~ 44K
Owo ~ 26K
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Measured specific heat and deduced Magnetic specific heat. crory v
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Chs in LCSO from subtraction of LZSO, a Schottky
(n = 0.014), and a nuclear sp. heats

Cr /T = constant does not by itself
imply a Fermi-surface.
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Available Magnetic Entropy
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Missing Entropy ~ 57 %
Independent of mag. fld up to 9 Tesla.
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p—relaxation rate and Cy(T)/T.
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T(K)
L. \NT) x Cp(T)/T, constant at low T. Unlike for excitations across a Fermi-surface.

2. Cu (T)/T separable into two parts with equal S,
Ratio of Low T Values = 6y /0y o —m=— Weakly Interacting layers.

3. Decay at higher T as In(6w /T)

4. From)\%27T<H12~c>T,
1/7~ 10K =~ O .
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Summary of Experimental Results with a theoretical perspective.

1. Every measured property is characterized quantitatively
by the same one parameter - an exchange energy.

2. Interesting phenomena start as In(fy,/T) and follows from
scale invariant fluctuations.

3. Specifically a fluctuation spectra
X (w,T)=c % tanh (5 )

is required, (with a logarithmic cut-off) i.e. spin-correlations ~ 1/,
in the measured temperature range, which is down to 1026y .

4. cis required for ultra-low energy or ultra-quantum SINGLET fluctuations,
which have (coincidentally?) the entropy of dimers on a triangular lattice.

Ultra-quantum fluctuations do not respond to field in the range applied.
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Two 'related’ compounds.

Herbertsmithite (S=1/2 on a Kagome lattice) has a contribution
C/T = constant at low T but only on applying H, and

a non-magnetic analog is not available

to deduce if there is unmeasurable entropy,

and the compound has about §% Schottky impurities,

like our LCZSO.

Great virtue: Single crystals are available and inelastic
neutron scattering showing scal\e—invariant flucs. but not the
simplest I expect in LCSO. )

YbMgO4: (triangular 's=1/2") Similar thermal properties
(after re-analysis) but all entropy recovered.
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Summary of Experimental Results with a theoretical perspective.

1. Every measured property is characterized quantitatively
by the same one parameter - an exchange energy.

2. Interesting phenomena start as In(fy,/T) and follows from
scale invariant fluctuations.

3. Specifically a fluctuation spectra
X (w,T)=c % tanh (5 )

is required, (with a logarithmic cut-off) i.e. spin-correlations ~ 1/,
in the measured temperature range, which is down to 106y .

4. cis required for ultra-low energy or ultra-quantum SINGLET fluctuations,
which have (coincidengally?) the entropy of dimers on a triangular lattice.

Ultra-quantum fluctuations do not respond to field in the range applied.
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A new ansatz for
S=1/2 Heisenberg model on a triangular or Kagome lattice.

i,5(ni

Best current belief: triangular lattice - non co-planar order,
liable to be unstable to small perturbations.
Kagome lattice: Spin-liquid. What kind?

Early desperate days: RVB - Partons, SU(2), U(1), Z2,...
Quantum liquid of dimers - Rokhsar-Kivelson, Moessner-Sondhi

AY/AVANAY
AVAVAY/
ANL/N

\VAVAVAY
+ NANAN + -
NANLY
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A New Ansatz

Given the dark entropy, a systematic dimer based approach
is worth investigating, but with actual couplings. *
H=Y,H,=Hu+H,
¢ - the centers of a given configuration of dimers,

Hyo = J Sue-Spr,

H[,l, = J % Zy(fnp,) S[LE'SVT ‘I‘ SMT.SVg

Try to solve the problem of a dimer interacting self-consistently
with the interacting dimers.

First step - a dimer interacting with spin-flucs. with constant density of states.
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First step on a related problem solved by Wilson numericahRG (B. Jones, V -1988)
and by analytical methods, Affleck and Ludwig (1991), (Sire, V, Krishnamurthy -1992).

Two- Interacting Kondo impurities:
H = KSE S + 5 (SE + 8 ) weuen o weven

T §(SE - Sr)-'ﬁbodd o 1/}odd
+ K.E.(even and odd fermions).

4 families of one-dimensional fermions. Only the odd parity spin-flip channel
is relevant. Also express S's in terms of fermions with same number of
degrees of freedom and correct commutations. (2 site version of J-W transform, )

Si,=dyder —1/2;8;, = dor(1 = (1 F0))100).

Problem reduces in strong coupling limit to 8 state problem + K.E.

H — h({ny,ne,nco} = {0,1})
+t(cger + ...) + H.C.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

The troubles with S; — ¢ m,b@, 3 : 2degrees of freedom changed to 4, and Gauge redundancy. Much confusion let loose.
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8 state problem which is two independent 4 state problems.
(Sire, V., Krishnamurthy -1992)

Basis: (0,0,0),(0,1,1),(1,0,1),(1,1,0); (1,1,1),(1,0,0),(0,1,0),(0,0,1).

Degeneracy of Even charge & Odd charge states : Super -symmetry.

Es

Odd and even sectors are coupled by  co, cg

At a critical value J/K = r,
All < f|cR|z >=< fleg|i > -
co = ¢y are real fermion, i.e. they are Majoranas and may be represented by Ising spins.

This property is preserved order by order for all ¢n = ¢,

Equivalent to CFT (Affleck-Ludwig, Maldacena-Ludwig): SO(7) X Ising.
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A mean-field ansatz keeping the symmetries:

Strong-coupling (as well as the CFT soluti'?n) involves complicated
many-body operator.

Essentially the same answers obtained from a mean-field theory
keeping the symmetries of the original problem. "Axial-charge” Symm.

The same thermodynamics and corr. function obtained as exact solution.

This ansatz can be extended to the lattice.
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Mean-field theory for dimer interacting with a bath of fermions:

Hej = m'(td;:ldu,r +df du) +ib(d] df 4 dyad )
+ c(Si(df ) —dyr) +ida(dpe — df ) + HC.

m, h, Ji, Jo are self-consistently determined coeffs.

Solution: At J; =0, or Jo =0, or J; = Js, choose m = h. Then c is a majorana.

The same thermodynamics and corr. function obtained as exact solution
for first two choices.

Lattice:

A Majorana can be bi-linear only with another Majorana.

So, the lattice problem at criticality is an effective Hamiltonian
with four degrees of freedom per dimer, two of which are
Majoranas, which can be written in terms of the d-operators
at every dimer.
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Mean-field ansatz for the lattice:

H = HO + Hly
Intra-dimer- two states/dimer:  H, = Z mdf dy, + ihd} ldir + H.C.
L
Inter-dimer-two Majoranas per dimer
with known relation of 's and d’s

Hl = % Zi/(np,) fYM;)’/V'

i, v lie on one of the arrangements of dimers on the triang. lattice.

Simple quadratic problem except that

Assume it is not a periodic arrangement. Then, can calculate only
local freq. dep. Green's functions and correlations.
With a constant local density of states of Majoranas, the results at m=h are
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Properties:

1. Local freq. dep. Green’s functions:
< dgdz- - dgd,g, < d,d, - dgd;!_ >

all have a simple pole at w = 0 and a continuum
with a scale I' = pJ2. This gives a

X" (w) o< tanh(Bw/2), for w << T'.  Prediction for neutron scattering.

2. C/T x \(T') x constant, follow.

3. Entropy down to very low scale to arrangements
of dimers: 53%. Obviously spin-singlets

4. Uniform susceptibility regular, Staggered susceptibility - log T divergence.
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Models with reliable similar results but no apparent connection.

Chandra Varma

Some but not all the results are similar to numerical results on the Toric model

and Kitaev model on the honeycombe lattice for extreme choice of parameters,
(seen approximately in Monte-carlo calcs. of Nasu, Udaggwa, Motone (PRB-2016)

on Kitaev model. ) Also Z2 gauge theory for some unknown range of parameters, etc.
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Underlying dispersion theory reason

The numerical calculations are a realization of CMV (1991):

In the energy and temperature range in which some fluctuations
are classical and others are nearly degenerate fermions,

the absorptive part of the polarizability or mag. susceptibiity is
~ tanh( w/2T), essentially independent of momentum.

: ) i Polarizability
Very massive classical fermions

or two state systems.

Degenerate fermions N—— <<:> O <:>

_w 1 w w
Classical MFL
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Properties:

1. Local freq. dep. Green’s functions:
< dgdz- o dgd,g, < d,d, - dgd;!_ >

all have a simple pole at w = 0 and a continuum
with a scale I = pJ2. This gives a

X" (w) o< tanh(Bw/2), for w << T'. Prediction for neutron scattering.

2. C/T < \(T') «x constant, follow.

3. Entropy down to very low scale to arrangements
of dimers: 53%. Obviously spin-singlets

4. Uniform susceptibility regular, Staggered susceptibility - log T divergence.
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Things not understood- (the known un-knowns)

Gives right number for unavailable or dark entropy.

[ts insensitivity to substantial magnetic field is probably
related to the topological nature of the available states.
Presumably at some ultra low energy scale, R-K kinetic
energy could come in so that it is not found at T to o.

The deviations from perfect Heisenberg interactions on
a perfect triangular lattice for the phenomena observed
is unknown. N

Tuning parameters is required for the log singularity in C/T.
Properties changes as a function of (m-h) smoothly. Low T
C/T = constant - crossover from critical Spin-liq.

to (critical) Fermi-liquid ?

Role of Impurities.
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Properties:

1. Local freq. dep. Green’s functions:
< dgdz— P dgd,g, < d,d, - dgd;!_ >

all have a simple pole at w = 0 and a continuum
with a scale I' = pJ2. This gives a

X" (w) o< tanh(Bw/2), for w << T'.  Prediction for neutron scattering.

2. C/T x \(T') x constant, follow.

3. Entropy down to very low scale to arrangements
of dimers: 53%. Obviously spin-singlets

4. Uniform susceptibility regular, Staggered susceptibility - log T di‘ergence.
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