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Abstract: Over forty detections of binary-black-hole mergers have been made during the first three observing runs of the LIGO and Virgo detectors.
With this larger number of measurements of increasing accuracy, many of the remarkable predictions of general relativity for strongly curved,
dynamical spacetimes will be able to be studied observationally. In this talk, |1 will discuss one class of strong-gravity phenomena, called
gravitational-wave memory effects, which are predictions of general relativity that are most prominent in systems with high gravitational-wave
luminosities, like binary black holes. Memory effects are characterized by changes in the gravitational-wave strain and its time integral s that persist
after a transient signal passes by a detector. | will summarize the computation of these effects and the prospects for current and planned future
gravitational-wave detectors to detect memory effects from black-hole mergers; in particular, there could be evidence for the memory effect in just a
few years of advanced LIGO, Virgo, and KAGRA data at their design sensitivities. | will also review what observing gravitational-wave memory
effects can teach us about the symmetries and conserved quantities around isolated systems like binary-black-hole mergers. Time permitting, | will
present results on memory effects in scalar-tensor theories& nbsp;of gravity and on subleading memory effects.
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Review/summary of gravitational wave (GW) detections
GW memory effect and its detection prospects
Implications of detecting GW memory

New types of GW memory effects and detection prospects

Future directions and conclusions
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Image Credits: LIGO/Virgo/KAGRA
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Evolution of frequency and amplitude encodes information about

the masses and spins of the individual BHs
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GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

~ First observing run (O1): 3 binary black holes (BBH)
~ 02: 7 BBH and 1 binary neutron star (BNS)
- 03a: 36 BBH, 1 BNS, 1 BH-NS (marginal), 1 BBH or BH-NS .
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GWs with memory | (v) (iv) ‘ |
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GWs GWs
GWs without memory .
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GWs with memory (iV)T : -!- :
/’M‘ \.........._. i '
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GWs GWs =
GWs without memory -
start end (ii)

GW memory is a prediction of GR that is (7) ‘ : ‘

expected for most transient GW sources
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[ dt Energy flux . R v

from GWs

Changes in
Ah < “conserved” + from massless —+

quantities Rarticles

Ex. NSs/BHs

Image Credit: P. Moesta Image Credit: SXS

Scatterin .
& Ex. SNe neutrinos Ex: BBH mergers
Zeldovich & Polnarev, (1974) Epstein, (1978) Christodoulou, (1992) 8
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— Advanced LIGO design sensitivity, single detector, angle

averaged, equal mass; prospects for detection not promising 11
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Credit: LISA
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Nichols, + (In prep} Mtot[MO]
— Planned launch:
~ Expect O(1) SMBBH merger with 2034
measurable GW memory effect during
LISA mission lifetime  isio+, (2019) 13
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S/N of memory in population:

) n 1/2
| (S/Neoe) = (Z(S{NAh)z)

i=1

(S/Neot) ~ v/n

- Population consists of
GW150914-like events
- Make multiple realizations

of this population

- Only count events with

measurable higher

20 40 60 80 100 harmonics of the GWs

Lasky+ (2016)  number of events
14
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Years Boersma, Nichols, Schmidt (2020)

~ Simulate multiple ¥ealizations of a BBH population consistent
with O1 & 02 LIGO BBHs; take median and 1-sigma error
~ aLIGO and AdVirgo design sensitivity; with 50% duty cycle

13
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Bondi-Metzner-Sachs (BMS) algebra

Bondi, van der Burg, Metzner (1962), Sachs (1962) f— , IIIJH n, |
Symmetry (u=0): (= a(6%)8, + YAOA

a(QA), supertranslation; YA, Lorentz

u =u+a(@®), o) = Zanggm(GA)
fm

Penrose (1963)

‘ 8%

Time translation Spatial translation Supertranslation

16
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Noether's theorem: symmetry=—=conserved quantity G
w3

Bondi+, Sachs (1962)

" f“ . .
£

Time translations =———p Energy .@'
Spatial translations == Linear momentum 3?
Rotations == Angular momentum (spin)

Lorentz boosts —— “Center-of-mass” angular momentum:

mass times CM position in rest frame

Supertranslations =% Supermomentum

- GWs change charges, but change in charges = net flux

17
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Changes in Energy flux
Energy flux
Ah o super- + [ du | from massless +

from GWs

momentum particles

~ Memory computed from supermomentum balance law and is

required for supermomentum flux law to hold!

Measuring GW memory will show:
Energy in GWs radiates like any other quadrupolar source
- Supermomentum conservation applies to BBH mergers
Final BH is a Kerr BH without supermomentum “hair”

- Initial & final “rest frames"” are supertranslated
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- New symmetries
proposed: super-

rotations/super Lorentz

Barnich & Troessaert (2010),
Campiglia & Laddha (2015)

~ YA a local conformal KV or a

diffeomorphism of the 2-sphere
— Related conserved quantities: “super CM" and “super spin”

- Are there new memory effects related to these conserved
quantities and are they measurable?

- Are these new memory effects related to the initial and final

frames being super Lorentz transformed?
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Change in Angular Angular

: Changes in
time- & —l—/du momentum -+ momentum
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Pasterski+ (2015) neutrinos Nichols (2017)

20
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+ higher PN terms nichols (2017)

M2 h3¥"™ found before at 2.5PN order awun (2005)
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Change in Changes in CM angular CM angular

time- super-CM + du [ momentum flux, + momentum
integrated charges massless fields flux, GWs
GW strain

?

No sources

computed yet;

Ex. Anyource SNe neutrinos [y e 3
Ex: BBH mergers

of GW memory are possible
Nichols (2018)
Nichols (2018) o
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Charge cv  GM quM sin® ¢ 5
duhy" = —/—A 257
part: ] =g A 3 ) Taa0 BT e

+ higher PN terms nichois (2018)
Flux

. vanishes for equal masses

part:  Proportional to |m;y -

Cannot measure integrated hf_M with LIGO, but can measure her

- ht™ a3 4PN term for charge
'l' 'I' part and 2.5PN for flux part
' =1 Both effects weaker than

(i) (if) (iii) spin memory; detection

prospects less optimistic
25
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Persistent Observables:

- 3 types of memory: “standard,”

spin, & CM;
other memory-like effects: lasting
velocity, proper-time, and rotation

- Can all these effects be measured

through one procedure?

- A: Yes! Multiple procedures:

nearby accelerating curves,
spinning test particles, angular

momentum transport

Flanagan, Grant, Harte, Nichols
(2019, 2020, in prep)
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-~ Solve for change in deviation vector for nearby curves AgCD
Aggo ~ef [ dr [ dr R0y
Contains standard GW memory at O(1/r) in Ah

L / dr / dr’ / dr" R 3, 4"~"

Contains spin and CM memory at O(1/r) in /d'f’ Ah

+é€/dT]dT,/dT”/dTmRaMgV"y”ﬁ/V

Contains new memory-like effects at O(1/r)

to be further investigated in /d’r dr’ Ah
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x sin? ¢ (17 + cos? 1)

X [1 - .f%Alog(a/M)]

M= mi + my
£~ 1/ < Mya + higher harmonics at OPN
- BBHs same as in GR + higher PN terms

Tahura, Nichols, Yagi (in prep)
- Work in limit in which quadrupole radiation dominates and

scalar (dipole) radiation is a small correction to energy flux

Scalar memory not present through 2PN Lang (2014)

Page 35/36

Pirsa: 21040034



GW memory from BBH mergers is a nonlinear, dynamical
spacetime effect that can be detected with LIGO/Virgo

- Memory is required for supermomentum balance, and is an
observational consequence of BMS symmetry
Future GW detectors (CE/ET) will study it more precisely

- Two new types of memory effects related to new conservation
laws: spin memory and center-of-mass (CM) memory

- Spin memory possibly measurable by ET /CE with stacking

- CM memory is most likely too weak even for 3G detectors

- More subleading memory effects in GR, and new effects in

modified gravity theories to be explored "
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