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Abstract: Quantum computers need to manipulate quantum states, and the only ways we know of doing this are inherently noisy. Thus, if we are
ever to be able to do long computations on quantum computers, we need to make them fault tolerant. The way we know how to do this currently is
to use quantum error correcting codes. We will introduce error correcting codes and explain how they can be used to provide fault tolerance for
quantum computers.
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Motivation

A

When | first discovered the quantum factoring algorithm in 1994,
one reaction was that this would never work because errors would
inevitably disrupt the computation. How bad is the situation?

To do 10° steps on a quantum computer, you need to do each step
with inaccuracy less than 1072, This seemed virtually impossible
to experimental physicists (and it still does).
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Classical Analog

The same objection was raised to scaling up classical computers in
the 1950's.

Von Neumann showed that you could build reliable classical
computers out of unreliable classical components.

Currently, we don’t use many of these techniques because we have
extremely reliable chips, so we don't need them.
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Obstacles to fault-tolerance

Can we use classical fault-tolerance techniques to make quantum
computers error-resistant? At first glance, it appeared that the

answer was "'no'".
Why not?

No-cloning theorem:
You cannot duplicate an unknown quantum state.
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Classical fault-tolerance techniques.

What techniques are available classically?
1. Checkpointing

2. Error-correcting codes

3. Massive redundancy
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Classical fault-tolerance techniques.

What techniques are available classically?

1. Checkpointing
You can't clone a quantum state

2. Error-correcting codes

3. Massive redundancy
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Classical fault-tolerance techniques.

What techniques are available classically?

1. Checkpointing
You can't clone a quantum state

. Error-correcting codes
These work!

. Massive redundancy
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Classical fault-tolerance techniques.

What techniques are available classically?

1. Checkpointing
You can’t clone a quantum state,

2. Error-correcting codes
These work!

3. Massive redundancy
This sort of works, but not well
(square root improvement).
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Best current results (this is a moving target!)

If the quantum gates are accurate to around 1 part in 102, you can
make fault-tolerant quantum circuits, but the overhead is
enormous. [N

1 part in 10* gives much better overhead, but gets very difficult
experimentally.

The best upper bound is around 1 part in 5.
Open question: what is the right threshold?

There's not going to be a definitive answer, because this very
much depends on the architecture of your machine.
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Talk outline:

Most of this talk will be explaining the techniques that go into the
best mechanism we know of for providing fault toleranke —
surface codes.

» Quantum error correcting codes
» Surface codes,

» Quantum fault tolerance

» Magic states
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Von Neumann Measurements

Suppose you have a quantum state space C". A von Neumann
measurement corresponds to a complete set of orthogonal
subspaces S1, S, ... Sk. (Complete means the S; span C".)

Let s, be the projection matrix onto the i'th subspace S;.

The corresponding von Neumann measurement operating on the
quantum state projects the quantum state onto the i'th subspace
with probability (v | Mg, | v), after which the state is g, |I/)
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The repetition code

The simplest classical error correcting code is the repetition code.

0 — 000
1 — 111

What about the quantum version? (originally due to Asher Peres)

| — [000)
1) — [111)
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The quantum repetition code

10), |000)
1), | 111)

This works against bit flips: ox =

- 1000) — |010)
ox(2): 111y |19f)

Can measure "which bit is different?” This measurement is a
projection onto one of four 2-d spaces, generated by the vectors:

{|000),|111)}  {|100),|011)}
{|010y,|101)}  {|001),|110)}

Possible answers: none, bit 1, bit 2, bit 3.
Applying o, to incorrect bit corrects error.
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The quantum repetition code

| 000)
= |111)

We can encode superpositions using this code

a|0), + B|1), = | 000) + B|111)

1\ . -
10 ) in the second bit:

Suppose we have a bit error ox = (

ox(2) : |000) + §|111) — «|010) + /3 |101)

When this is measured, the result is “bit 2 is flipped,” and since
the measurement gives the same answer for both elements of the
superposition, the superposition is not destroyed.

Thus, bit 2 cn now be corrected by applying 0x(2).
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Three-bit quantum repetition code

[0}, = 1000)
|, = [111)

What about a phase flip error

1 0
oz:(o _1)?

|0}, =[000) —  |000) = [0),
1), =[111) — —[111)=—|1),

Thus, a phase flip on any qubit gives a phase flip on the encoded
qubit, so phase flips are three tiTes as likely.
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3-qubit quantum repetition code

| 000)
|111)

A similar thing happens for a general phase error

1 0
0 e."ﬁ' :

Suppose you have phase errors e, e%2, ¢/% on qubits 1, 2, 3.
Then the phase error in the encoded qubit is e"(gl“"‘("?*i?).

Phase errors are behaving like errors in analog computation, and so
are uncorrectible.
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Anotner 5-qupit code

The unitary transformation

=53 1)

takes phase flips to bit flips and vice versa:

(3 3)-(3 )

Suppose we apply H to the 3 encoding qubits and the encoded
qubit. What does this do to our code?
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The 3-qubit phase-error-correcting code

Applying H, we get a new code

L (1000} + | 011) + | 101) + | 110))

(| 10(% +|010) + | 001) + |111))

| 0) encoded by superposition of states with an even number of 1's;
| 1) by superpositions of states with an odd number of 1's.

A bit flip on any qubit exchanges 0 and 1, so it takes a logical 0 to
a logical 1. Thus bit flips are three times as likely.

Pirsa: 21040003 Page 19/58



The 3-qubit phase-error-correcting code

%(| 000) +|011) + | 101) + | 110))

%(| 100) + | 010) + | 001) + | 111))

A phase flip on any qubit is correctable.

; ) on bit 3.

Eg. 0:= 0 -1

72(3)[0), = 5 (1000} — |01F) | 101) + | 110))

This is orthogonal to o,(a)|b); unless a =3, b= 0.
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Putting them together

We have one 3-qubit code which protects against bit errors and
makes phase errors more likely. We have one 3-qubit code which
protects against phase errors and makes bit errors more likely.

But we want to protect against both phase errors and bit errors.
What do we do?

We combine the codes to get a 9-qubit code.

First encode the qubit using one 3-qubit code. Then encode each
of the resulting qubits using the other 3-qubit code. Now the code
protects against both phase and bit errors.

This is called concatenating the codei
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The 9-qubit code

First quantum error correcting code discovered:

1
|0}, = 5(/000000000) + | 000111111) + | 111000111) + | 111111000))

1
/1), = 5(] 111000000 + | 000111000) +| 000000111) + | 111111111))

This code will correct any error in one of the nine qubits.

Two concatenated codes: the outer one corrects phase errors, and

the inner one corrects bit errors.
0

1 0
the other two qubits in its group of three.

, it is corrected by comparison with

If you have a bit flip: (
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The 9-qubit code

0), = %(| 000000000 + | 000111111) + | 111000111) + | 111111000))

1), = %(| 111000000} - | 00013000) +|000000111) + | 111111111))

000111000

If you have a phase flip on a single qubit: ( é _g ) it gives the
same result as a phase flip on any of the other qubits in the same

group of three.
The correction works exactly as it does in the 3-qubit

phase-correcting code.
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vViore general errors

Now we have a code which corrects one error of type oy, o, or gy
(phase flip, bit flip, both bit and phase flip).

0 1 ~1 0 0 =i
*=\10) 2= o 1) =i o

But there are many more quantum errors you can apply to a single
qubit (arbitrary unitary matrices and measurements).
Can these be corrected?
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More general errors

Theorem:

If you can correct a tensor product of t or fewer errors of any of
the following three types:

(01 _fl = (1 o0
E=k1 0)* TR B} =T o -1

then you can fix any error restricted to t qubits.

Proof Sketch:

The identity matrix and oy, o, and o, for a basis for 2 x 2
matrices. One can thus decompose any error matrix into a sum of
these four matrices. If the error only affects t qubits, it applies the
identity matrix to the other qubits, so the decomposition never has
more than t terms in the tensor product not equal to the identity.
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Example with 3-qubit phase-error-correcting code

~ (1000) +|011) +] 101) + | 110))

%(| 100) + | 010) +|001) + | 111))

Suppose we apply a general phase error ( (1) egg ) to qubit 1,

say. How can we correct this?
e 0
0 er'6
We can do this, since global phase changes are immaterial.

Rewrite error as

Then |0); goes to e*"g( |000) + | 011) ) + e"g( |101) +|110))
= cosf(]000) + |011) + | 101) + | 110))
—isin6(]000) +]011) — | 101) — [ 11p))
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Example with 3-qubit phase-error-correcting code

Recall from the last slide that a phase error in qubit one takes our
logical zero to:

|10), — c059(|000}—0—|011)—|—|101}+|110))
—i sin 9( |000) + |011) — |101) — |110))
When we measure “which bit has a phase flip,” we get “bit 1"

with probability |sin?| and “no error’ with probability | cos? 4.
The state has “collapied,” so our measurement is now correct.
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Small errors on every qubit

We can handle arbitrary errors on up to t qubits. How about small
errors on every qubit?

Expand the errors in a Taylor series, and use the fact that most of
the mass is in terms that have errors in t or fewer qubits.
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How do quantum error correcting codes work?

Now we can answer the question: how did we get around the
Heisenberg Uncertainty Principle (if you measure the error, you
disturb the state of the system).

We constructed codes where we can measure the error (assuming
it falls into some set of likely errors) without measuring the
encoded quantum state. We then can correct the error without
disturbing the quantum state.

This requires us to ﬂrf codes where the likely errors are orthogonal
to the encoded state.
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Are there better codes?

There are better classical codes than repetition codes.
The [7,4, 3] Hamming code, for example.
The codewords are the binary row space of

This code maps 4 bits to 7 bits. TheIninimum distance between
two codewords is 3, so it can correct one error.

The quantum analog of the 3-bit repetition code is a 9-qubit code
that can correct any error in 1 qubit. How can we make betterl
quantum codes?
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Generator matrix for Hamming code:

G =
1
The code C is the row space of G.

To correct errors, we use the parity check matrix H. This is a
generator matrix of C+ = {v:v-w =0 for all w € C}.

1 0
H= 0 0
0 1

Hv =0if v e C.
HvIs the syndrome, which tells us the location of the errors.
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How to Decode Classical Linear Codes

Recall we have a generator matrix G and a parity check matrix H
with GHT = 0.

Message:
Encoded message:

Encoded message with error:
mG + e

Syndrome:

(mG + e)H' = elf*

So the syndrome depends only on the error.
Finding the error from the syndrome is hard in general; you need to
find codes where it can be done efficiently.
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Quantum Hamming code

|0000000) + |1110100)

0) _ 1 [ + |0111010) + |0011101)
L= /g | +|1001110) + |0100111)

+ |1010011) + |1101001)

11100010) + |0110001)

1), = L [ + [1011000) -+ |0101100)
L= /g | + |0010110) + |0001011)

+ |1000101) + |1111111)

(H+1)

The bit flip errors are correctable, since all elements in these
superpositions are in the Hamming code (if you measure the
syndrome, you know which bit to correct).

1 -1
to all 7 encoding qubits and to the encoded qubit takes the code
to itself.

The phase flip errors are correctable since applying H = ( bl )
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CSS Codes

This construction generalizes, giving CSS codes (discovered
simultaneously by Calderbank and me, and by Steane).

Suppose we have two weakly dual codes C; and Ci,
i.e.,, forx € C;and y € C2J-, X = ).
So C2 C Cl.

Then we define codewords corresponding to the cosets of G in (.

|x+ G) =G> |x+v)

ve (G

If Cy can correct t; errors and G can correct t» errors, then the
CSS code can correct t; bit errors and tqphase errors.
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The 5-qubit code

Two groups (at IBM and LANL) discovered a five-qubit code using
computer search.

1
00 = (|10010} + (01001} + [10100) + |01010} + |00101)

— |00011) — [10001) — [11000) — [01100) — |00110)
— |01111) — |10111) — [11011) — [11101) — |11110)

+100000))
11z =i(|01101) + [10110) + |01011) + [10101) + [11010}

— [11100) — [01110) — [00111) — [10011) — |11f401}
— |10000) — [01000) — 00100} — |0D010) — [D0001)

+11111))

With Calderbank, Rains, and Sloane, | discovered the structure
behind this code. This was discovered simultaneously by Daniel

Gottesman.
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Stablizer Codes
The 5-qubit code:

0)z :i(uoum) +01001) + [10100) + [01010) + [00101)
— |00011) — [10001) — [11000) — [01100) — 00110}
— [01111) — [10111) — [11011) — [11101) — [11110)
+ [00000))

3 |

=3 (101101) + [10110) + [01011) + [10101) + |11010)
— |11100) — [01110) — [00111) — [10011) — |11001)
— [10000) — [01000) — [00100) — |00010) — |00001)
+ |11111))

is the subspace of states left invariant by the following unitary
transformations:

0x R0, V0, R0, |
| ®0x®0,®0, oy
ox® 1 @ox Q0,0
O'Z®O'X®I®O'X®OI
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Back to the quantum Hamming code

/0000000) + |1110100)

o), =L | + |0111010) + |oo1tion)
t =8| + |1001110) + |0100111)
+ |1010011) + |1101001)

|1),  defined similarly.

This code consists of the codewords thatLre simultaneous
eigenvalues of

Uz®Uz®Uz®l®Uz®l®l G—x®0—x®0—x®l®0'x®l®,
| o, @0, 30,93 o, | Il Qo Qo R0, @I Qo R |
IR 1T Ro, R0, R0, | R0, IR 1 RO, Rox R0, R | ® 0y
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Back to the quantum Hamming code

/0000000) + |1110100)

o), =L | + |0111010) - |oo1tion)
t =g | + |1001110) + |0100111)
+ |1010011) + [1101001)

|1),  defined similarly.

This code consists of the codewords that are simultaneous
eigenvalues of

0:0:00: 1 ® 1 @1 0xR0xR0x I ®ox® 1 ® I
| o, @0, 30,31 o, | l Qo Qo R0, @I Qo R |
IR 1 R, R0, R0, | R0y I Q1 RO, Rox R0, R | oy

The logical o operator is 2. and the logical o, operator is J?I
They commute with all the elements of the stabilizer, but they
don’t commute with each other.
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The Toric Code (Introduced by Alexei Kitaev 1997)

The toric code is a CSS code. The qubits are on the edges of an
n x n grid on a torus. The code is generated by a stabilizer
consisting of four edges around each plaquette, with o, operators

(blue) and four edges around each vertex, with o, operators (red).
These all commute.
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The Toric Code (Introduced by Alexei Kitaev 1997)

The toric code is a CSS code. The qubits are on the edges of an
n x n grid on a torus. The code is generated by a stabilizer
consisting of four edges around each plaquette, with o, operators

(blue) and four edges around each vertex, with o, operators (red).
These all commute.

The stabilizer con-
tains n®> —1 linearly
independent  pla-
quette operators

(LJ

and n? — 1 linearly
independent vertex
operators.

This means that it encodes 2n? —I2(n2 — 1) = 2 qubits.
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The Toric Code

The toric code encodes two qubits. The logical o, operators are
chains of o,'s on edges that wrap around the torus, and the logical
ox operators chains of g’'s on edges that wrap around the torus.
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The Toric Code

How do you correct errors on a toric code?

There will be some el- Find the shortest set of
ements of the stabilizer paths that connect all these
which are not satisfied. incorrect elements.
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computation

(for quantum circuit model)

A computation (program) is a sequence of quantum gates applied
to one or two qubits at a time.

Why two?

Three doesn’t give any more power, and seems more complicated
experimentally.

Arbitrary many-qubit gates are hopeless experimentally, and
realizable ones don't seem to add any extra computational power.
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Quantum Gates

Universal Sets of Gates
As in classical computing, you only need a finite set of quantum
gates to perform arbitrary computation.
These gates will not let you simulate computations with an
arbitrary set of gates exactly, but will let you approximate them
arbitrarily closely.

1
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Requirements for fault tolerance

I

» We need fault tolerant quantum circuits implementing gates
on encoded qubits. Note that we cannot decode to implement
the gates, as that exposes our qubits to error.

» We need fault tolerant quantum error correction circuits that
correct more errors (on average) than they make.
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Fault Tolerant Computing

Classically: Quantum Mechanically:

11101 Ll L.l 1

QECC | QECC |

QECC QECC
[TTT1 [IT1]1

Correction Correction

[TI1] [TTL]I
QECC QECC
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Transversal Gates

A

For CSS codes, certain gates can be implemented transversally.
For example, to do a CNOT on the encoded qubits a and b, take
the CNOT of the ith qubit encoding a with the ith qubit encoding
b, fori=1...n.

This is automatically fault-tolerant because the error can never
spread beyond the i'th qubit.
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Fault Tolerant Computing

Classically: Quantum Mechanically:

QECC | LIQECC \

QECC QECC
[TTT1 [TT1]1

Correction Correction

[TI1] [TTL]I
QECC QECC

11101 Ll L.l 1
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Example: CNOT gate on the Hamming code.

Let X be xxxxxxxx, where x = 0 or 1. Recall

|x)p = | %+ H) = |H[Y2) g+ v)
veH

Now, let's do a transversal CNOT gate between two of these.

CNOT®" | %+ H) ® | 7 + H)

= |H|'CNOE®" Y "z +v)® Y |7+ w)

veH weH

:|H|_IZ(|)‘<+V)® S x+y+v+ w))

veH weH

=HY [x+v)@ Y [x+7+w)

veH weH
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The Clifford group

For many CSS codes, 7/4 gates, Hadamard gates, and CNOT
gates can all be implemented transversally. These gates generate a
discrete subgroup of unitary transformations called the Clifford

group.

But if you can do all operations in the Clifford group on a quantum
computer, this isn’'t enough to do quantum computation.
Computations in the Clifford group can be efficiently simulated by
a classical computer.
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The Clifford group

For many CSS codes, 7/4 gates, Hadamard gates, and CNOT
gates can all be implemented transversally. These gates generate a
discrete subgroup of unitary transformations called the Clifford

group.

But if you can do all operations in the Clifford group on a quantum
computer, this isn’'t enough to do quantum computation.
Computations in the Clifford group can be efficiently simulated by
a classical computer.
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Non-Transversal Fault-Tolerant Gates

It is a theorem (Eastin and Knill) that you cannot use transversal
gates for all the gates in a set of universal gates.

To make general fault-tolerant circuts, we need to find
fault-tolerant subcircuits for performing some gate we cannot do
transversally.

It can be shown that we can implement 7 /8 gates fault-tolerantly
if we can manufacture a certain helper quantum state with
reasonably high accuracy.

We can manufacture this helper state with reasonable probability.

I
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Magic States

Suppose you want to implement the non-Clifford gate

i,
R cosyg sing
/8 sin % cos%

You create the state
e

MY, =
| M), cos8

T
|0>L+5'n§|1>1_°

I

You then apply a joint measurement on the qubit you want to
rotate and the magic state.
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Magic States

How do you create the state

™

8

w

M), =
| M), = cos 8

|10), +sin~|1),?

Suppose you have a lot of states that are somewhat close to this
state. You can apply a measurement to seven of them. For one
measurement outcome, you will obtain a state ghat is closer to the
desired state | M), than the ones you started whth. Repeat.

What is this measurement. Assume you have | 1), |¢2),...,|¥7)
all close to | M),. Then you take | ;) |¥3) ...|t¥7) and make the
syndrome measurements you would use for the seven-qubit
Hamming code on logical qubits. If the answer you get is “no
error’, then you can obtain one state that is closer to | M), from
the result.
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Problems with Magic States

The disadvantage of using surface codes and magic states for
fault-tolerant quantum computation is the amount of overhead.

Surface codes are inefficient because one qubit is encoded using
2k?. And magic states are inefficient because you need to create
lots and lots of imperfect logical magic states before you can distill
them into a few nearly-perfect logical magic states. So projected

designs for large-scale fault-tolerant quantum <I>mputers use nearly
all their resources (qubits, chip area, etc.) for magic state factories
which supply the magic states needed to do fault-tolerant quantum
computation.
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Problems with Magic States

The disadvantage of using surface codes and magic states for
fault-tolerant quantum computation is the amount of overhead.

Surface codes are inefficient because one qubit is encoded using
2k?. And magic states are inefficient because you need to create
lots and lots of imperfect logical magic states before you can distill
them into a few nearly-perfect logical magic states. So projected
designs for large-scale fault-tolerant quantum computers use nearly
all their resources (qubits, chip area, etc.) for magic state factories
which supply the magic states needed to do fault-tolerant quantum
computation.

Are there better ways to do thi& We don’t know, but people are
trying to figure out some.
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Are there better ways to do quantum fault tolerance?

People are thinking about it.

LDPC codes (codes with all small parity checks) have turned out
to be incredibly useful for classical error correction. They should be
very good for quantum computation, too.

One way of constructing quantum L;DC codes is by using
hypergraph products. Here are a few references:

» Tillich and Zémor find quantum LDPC codes with distance n'/?,
arXiv:0903.0566,

» Roffe, White, Burton, and Campbell show how decode quantum
LDPC codes efficiently, arXiv:2005.07016,

» Hastings, Haah, and O’Donnell find quantum LDPC codes with
distance n3/°, arXiv:2009.03921,

» Breuckmann and Eberhardt have a survey article on quantum LDPC
codes, arXiv:2103.06309.
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Are there better ways to do quantum fault tolerance?

Besides the hypergraph product construction, there are also codes
related to topological quantum field theory and modular functors.

In topological quantum computation, you perform computations by
braiding quasiparticles called anyons}round each other and
observing what products you get when you fuse two of them.

These papers show how to create anyons by arranging a
Hamiltonian with carefully chosen energy costs for local
configurations. Anyons then correspond to energy excitations in
this Hamiltonian.

» Kitaev's original construction: arXiv:quant-ph/9707021,

» Koenig, Kuperberg, and Reichardt have a more general
construction: arXiv:1002.2816.
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