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Singularity formation in Black hole interiors.

Spyros Alexakis

loannina, March 2021.
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Examples of singularity formation: Black hole interiors.

Oppenheimer and Snyder (1939) considered the evolution of initial
data of a cloud of dust, (with zero pressure), due to its own
gravitational field.
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Examples of singularity formation: Black hole interiors.

Oppenheimer and Snyder (1939) considered the evolution of initial
data of a cloud of dust, (with zero pressure), due to its own
gravitational field.

Figure: Time snapshots of spatial geometry in Oppenheimer-Snyder.
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Examples of singularity formation: Black hole interiors.

(Kruskal 1960): Proper understanding of connection to the
Schwarzschild solution (discovered in 1915). Singularity forms in
the black hole interior.

vreof: SIN G LA

—

Figure: LEFT: The initial metric of (maximally extended) Schwarzschild:
Two ended. RIGHT: Penrose diagram of Schwarzschild.
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Examples of singularity formation: Black hole interiors.

Nature of the singularity: Singularity displays infinite spatial
contraction in two directions and infinite spatial expansion in the
remaining third direction.

However Kerr solution shows instability of this singularity
formation.

Figure: Penrose diagrams of Oppenheimer-Snyder, Schwarzschild and
Kerr.
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Examples of singularity formation: Big Bang singularities.
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Examples of initial singularities obtained in the 1920s:
Friedmann-Lemaitre-Robertson-Walker. Constructed examples in
the presence of matter: (Fluids, of different types). These explicit

solutions are entirely isotropic. One example is where the metric is
defined for all t > O:

g = —dt? + t273(dx1)? + t2/3(dx?)? + t2/3(dx3).
(Note there is a fluid of some time-dependent density which we do
not write out here). Space shrinks down to nothing as t — 0.
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Examples of singularity formation: Big Bang singularities.
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Examples of initial singularities obtained in the 1920s:
Friedmann-Lemaitre-Robertson-Walker. Constructed examples in
the presence of matter: (Fluids, of different types). These explicit

solutions are entirely isotropic. One example is where the metric is
defined for all t > O:

g = —dt? + t273(dx1)? + t2/3(dx?)? + t2/3(dx3)?.
(Note there is a fluid of some time-dependent density which we do
not write out here). Space shrinks down to nothing as t — 0.

Kasner solutions (1921) (vacuum equations):
g = —dt? + 29 (dx')? + 22 (dx?)? + 2B (dx>)?.
Here g1 + g2+ g3 = 1 and (q1)° + (q2)* + (¢3)° = L.
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Examples of singularity formation: Big Bang singularities.

Examples of initial singularities obtained in the 1920s:
Friedmann-Lemaitre-Robertson-Walker. Constructed examples in
the presence of matter: (Fluids, of different types). These explicit

solutions are entirely isotropic. One example is where the metric is
defined for all t > O:

g = —dt? + t273(dx1)? + t?/3(dx?)? + t2/3(dx3)?.
(Note there is a fluid of some time-dependent density which we do
not write out here). Space shrinks down to nothing as t — 0.

Kasner solutions (1921) (vacuum equations):
g = —dt? + 27 (dx1)? + 22 (dx?)? + 2B (dx>)?.
Here g1 + g2 + g3 = 1 and (q1)° + (q2)* + (g3)° = L.

Note in particular that one of the g;'s must be negative for vacuum
solutions. The FLRW solutions have a fluid present and can admit
contractions in all directions—below to generalized Kasner family.
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BBC Black Holes Quiz

How much do you know about black holes? < Share

Inside the Mind of Prof Stephen Hawking Prof Hawking on Desert Island Discs

Take a cosmic journey with the world's most famous  First broadcast on Christmas Day in 1992.
physicist.

In Our Time: Black Holes

Melvyn Bragg discusses black holes, the dead
collapsed ghosts of massive stars.
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Stations Categories Schedules Favourites
iPlayer Radio Submite

How much do you know about black holes? « Share

/

Question 3 of 9

When a st$r collapses into a black hole all its mass gets squeezed into:

The singularity

The event horizon

Another dimension
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Nature of the singularity—Mixmaster chaotic behaviour.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the
singularity, between different Kasner-type solutions.
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Nature of the singularity—Mixmaster chaotic behaviour.

Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the
singularity, between different Kasner-type solutions.

Remark: This is an extrapolation from an analogous conjecture
concerning the initial, Big Bang singularity of space-time.

very little evidence in favour of this. Only in the Big Bang
setting. cf. Asthekar, Misner, Ringstrom.

Special situation in BKL broad picture: No oscillations, and
Asymptotically Velocity-term dominated (AVTD) behaviour of the
metric: In synchronized time function 7:

im0 O] < 717 - |0r g
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Nature of the singularity—Mixmaster chaotic behaviour.
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Conjecture (Belinskii-Khalatnikov-Lifshitz)

Generically the space-time metric will oscillate wildly prior to the
singularity, between different Kasner-type solutions.

Remark: This is an extrapolation from an analogous conjecture
concerning the initial, Big Bang singularity of space-time.

very little evidence in favour of this. Only in the Big Bang
setting. cf. Asthekar, Misner, Ringstrom.

Special situation in BKL broad picture: No oscillations, and
Asymptotically Velocity-term dominated (AVTD) behaviour of the
metric: In synchronized time function 7:

lim|T|_>0]5gXX] < |7-|‘S : |5’7-ng’

Velocity component of dg dominates all spatial components.
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Examples of singularity formation: Black hole interiors.
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Nature of the singularity: Singularity displays infinite spatial
contraction in two directions and infinite spatial expansion in the
remaining third direction.

However Kerr solution shows instability of this singularity
formation.

Figure: Penrose diagrams of Oppenheimer-Snyder, Schwarzschild and
Kerr.
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Examples of singularity formation: Black hole interiors.

Pirsa: 21030040

Nature of the singularity: Singularity displays infinite spatial
contraction in two directions and infinite spatial expansion in the
remaining third direction.

However Kerr solution shows instability of this singularity
formation.

Figure: Penrose diagrams of Oppenheimer-Snyder, Schwarzschild and
Kerr.
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Singularities, Some examples.

Theorem (Dafermos-Luk, 2017,+ )

In vacuum: For generic perturbations of a Kerr solution exterior, 3
a portion of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2018,
Fournodavlos-Rodnianski-Speck, 2020.)

In topology TN, all (generalized) Kasner solutions in the
sub-critical regime in Einstein-scalar field/high-dimensional
vacuum/(3 + 1) polarized vacuum, are stable, for the
backwards-in-time problem: Perturbations of the data at {T = 1}
lead to space-like singularity formation at {T = 0}: AVTD
dynamics, and convergence (in some sense) to a different Kasner
solution at each “point” on {T = 0}.
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Singularities, Some examples.

Theorem (Dafermos-Luk, 2017,+ )

In vacuum: For generic perturbations of a Kerr solution exterior, 3
a portion of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2018,
Fournodavlos-Rodnianski-Speck, 2020.)

In topology TN, all (generalized) Kasner solutions in the
sub-critical regime in Einstein-scalar field/high-dimensional
vacuum/(3 + 1) polarized vacuum, are stable, for the
backwards-in-time problem: Perturbations of the data at {T = 1}
lead to space-like singularity formation at {T = 0}: AVTD
dynamics, and convergence (in some sense) to a different Kasner
solution at each “point” on {T = 0}.

D)-

g = —dr? + Z,Dzl g,-,-(xl, .. .XD)7'2q"(IX1’”"X
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Singularities, Some examples.

Theorem (Dafermos-Luk, 2017,+ )

In vacuum: For generic perturbations of a Kerr solution exterior, 3
a portion of weak null singularity inside black hole.

Theorem (Rodnianski-Speck, 2014, 2018,
Fournodavlos-Rodnianski-Speck, 2020.)

In topology TN, all (generalized) Kasner solutions in the
sub-critical regime in Einstein-scalar field/high-dimensional
vacuum/(3 + 1) polarized vacuum, are stable, for the
backwards-in-time problem: Perturbations of the data at {T = 1}
lead to space-like singularity formation at {T = 0}: AVTD
dynamics, and convergence (in some sense) to a different Kasner
solution at each “point” on {T = 0}.

g = —dr’+ Z,-Dzl gi(xt, .. .XD)7-2q"(X1"">XD).Curvature blows up
like |R(g)| ~ 772, ©
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Our result: Stability under polarized axial symmetry.

2M oM
gschw = (1 — —)dr® — (1 — ==)dt* + r*(d0” + sin’0dg?).
r r

0y i1s Killing. Polarized Killing becayse dy L 0¢, 0y, 0.

Theorem (A.—Fournodavlos, 2020)

Consider axi-symmetric, polarized perturbations of the
Schwarzschild data on r = M, t € [0, M]. Then the solution
8perturb Of the vacuum Einstein equations develops a space-like
singularity, with (gauge-normalized) asymptotics of the form:

2M
g, ~ (]_ _ T)—1dr2 + gtt(t7 H)rﬁ(tﬁ)dtz 4 g99r25(t’0)d02

(1)

+ r{t0 drdf + Zaso(t, 0)r2 (&9 sin?0d 2.
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Our result: Stability under polarized axial symmetry.

2M oM
gschw = (1 — —)7dr® — (1 — ==)dt* + r*(d6” + sin’0dg?).
r I

0y i1s Killing. Polarized Killing because dy L 0¢, 0y, 0.

Theorem (A.—Fournodavlos, 2020)

Consider axi-symmetric, polarized perturbations of the
Schwarzschild data on r = M, t € [0, M]. Then the solution
8perturb Of the vacuum Einstein equations develops a space-like
singularity, with (gauge-normalized) asymptotics of the form:

2M
g, ~ (]_ _ T)—1dr2 + gtt(t7 H)I’ﬁ(t’e)dtz 4 g99r25(t’0)d02

+ r{t0 drdf + gso(t, 0)r2* &9 sin?0d 2.

In fact a(t,0) ~ 1, § =0(a) ~ 1,8 = B(a) ~ —3,¢
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Key structure in axial symmetry.
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The reduced Einstein equations:
Polarized axi-symmetry:

g3-|—1 _ g¢¢d§b2 I h2—|—1

EVE.: Ric(g) =0. Let vy = log(g¢¢).

gy =0, Ric,-j(h2+1) = V%W + VivVj7.

2nd equations can be expressed as ODEs:
Choose a geodesic gauge Ve,e0 =0, Vg6 = 0. The “main
variables” become the ep-derivatives of the metric ht1:

Y
K,'j =< Veieo, e > .
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Wave-ODE system. Formal Asymptotics at singularity.

Our system reduces to:

Ug()7 =0,
'K = K+ K+ V?y + VyVr, (2)
e’a =K xa+ V2y+ VyVh.

(where spatial part of g given by 8spatial = a - 2). Formal

asymptotics: v ~ «a(t,0)logr + B(t,6) + O(r). Assuming this for
~ we have in principal frame for K:

Ki = B(t,0)r 32 + 0(r~Y/2) + y(t, 0)r<(t:0),

N (3)
Koy = (5(1‘, 9)!‘_3/1' + O(I’_l/z), Kip = O(r_%)
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Wave-ODE system. Formal Asymptotics at singularity.

Our system reduces to:

He()y =0,
e’K = K K+ V?y+V1Vy, (2)
e’a =K xa+ V?y+ VyVh.
(where spatial part of g given by 8spatial = a - 2). Formal
asymptotics: v ~ «a(t,0)logr + B(t,6) + O(r). Assuming this for
~ we have in principal frame for K:
Kll — B(tv (9)/’_3/2 + O(r_1/2) T y(tv H)rE(tﬁ)a
Koy = (5(1‘, 9)!‘_3/2 -+ O(I’_l/z), Kip = O(r_%)
B(t,0) = B(a(t,0)),0(t,0) = d(a(t,0)) are explicit and it turns
out:

(3)

trK(r = p) = gp_3/2 + O0(p~Y?).
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Math: Energy estimates, Gauge choice, singular branch.
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Ricatti equation for Ko, sees the (unique!) collapsing direction 0.
Can well blow up before r = 0 for gauge reasons. Want to solve
backwards to avoid this: Forced to solve the above by iteration.
Forced to use energy estimates to produce real solution.
Asymptotically CMC of r-level sets is crucial for wave equation.
For Ricatti danger in differentiated equations: 9 = 0%, 0y.

e08K11 = 2K11|8K11 . 2K125’K12 = (9[V2’7 =3 VW/VW]

admits free branch like r(t9) (consistent with undifferentiated
Ricatti).
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Wave-ODE system. Formal Asymptotics at singularity.

Our system reduces to:

He()7 =0,
'K = K+ K+ V?y + VyV7, (2)
e’a = K xa+ V2y + VyVh.

(where spatial part of g given by 8spatial = a - 2). Formal

asymptotics: v ~ «a(t,0)logr + B(t,6) + O(r). Assuming this for
~ we have in principal frame for K:

Ki = B(t,0)r 32 + 0(rY/2) + y(t, ) r<(t:0),

(3)
Kyy = (5(1‘, 9)!‘_3/2 -+ O(I’_l/z), Kip = O(r_%)
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Math: Energy estimates, Gauge choice, singular branch.
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Ricatti equation for Ko, sees the (unique!) collapsing direction 0.
Can well blow up before r = 0 for gauge reasons. Want to solve
backwards to avoid this: Forced to solve the above by iteration.
Forced to use energy estimates to produce real solution.
Asymptotically CMC of r-level sets is crucial for wave equation.
For Ricatti danger in differentiated equations: 9 = 0%, 0y.

e08K11 I 2K118K11 = 2K125’K12 = (9[V27 = VW/VW]

admits free branch like r(t9) (consistent with undifferentiated
Ricatti). But

608K22 an 2K228K22 + 2K12(9K12 = 8[V2’}/ i V’YV’Y]

admits free branch r—3i¢(t.0)
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lteration, and location of initial data.

Set up an iteration to solve this system: g™ = (e?7" d¢?, h2H1):
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Math: Energy estimates, Gauge choice, singular branch.
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Ricatti equation for Ko, sees the (unique!) collapsing direction 0Oy.
Can well blow up before r = 0 for gauge reasons. Want to solve
backwards to avoid this: Forced to solve the above by iteration.
Forced to use energy estimates to produce real solution.
Asymptotically CMC of r-level sets is crucial for wave equation.
For Ricatti danger in differentiated equations: 9 = 0%, 0y.

e08K11 I 2K118K11 = 2K125’K12 = (9[V27 <t VW/VW]

admits free branch like r(t9) (consistent with undifferentiated
Ricatti). But

608K22 an 2K228K22 + 2K12(9K12 = 8[V2’}/ =i V’YV’Y]

admits free branchr r=3T€(t9) If this is present then no possibility
of deriving any estimates for the system. (In the iteration
estimates would be getting exponentially worse at each step).

Page 29/31



lteration, and location of initial data.

Set up an iteration to solve this system: g™ = (e?7" d¢?, h%H1):

Initial data induced on a hypersurface surface o
Zrj]’(l“,@) ={r=r(t,0)}.

Solve Ogm-1y™ = 0 forwards, starting at {r = r[""1(t,0)}.
Solve Ricatti equations for K35, K{5 backwards, starting at the

singularity. [No free branch for these ODEs—for 0K3j set
“artificial” free branch to zero].

Identify hypersurface {r = r["(t,0)} where prescribed initial
data will be induced.

Prescribe remaining initial data for K{7,a™ on {r = r["(t,6)}
and solve these towards the singularity again.

lterate.
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Outlook.

Open questions and future directions.

@ A method is introduced to study Einstein’s equatlions in
(polarized) axial symmetry. Key structure is a free-wave ODE
system. (Outside polarized wave-map and ODE system).

Easier way to study EE than other gauges?

E.g., perturbations of all (3 + 1)-solutions with 2 degrees of
symmetry to just one degree of symmetry?

On black hole singularities: One-ended initial data?

Other settings: Black hole exteriors, other cosmological
constants?
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