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Abstract: Large surveys of the positions of galaxies in the Universe are becoming increasingly powerful to shed light on some of the unsolved
problems of cosmology, including the question of what caused the early Universe to expand. The analysis of the data is challenging, however,
because the signal is small, the data is difficult to model, and its probability distribution is not fully known. I will present some recent ideas to
approach these challenges.
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Nature of each building block is unknown

Cosmic inflation
What particle physics model led to the rapid expansion?
How did our Universe begin?

Dark energy
What causes this 2nd epoch of rapid expansion?
Is it a cosmological constant? Is General Relativity broken?

Dark matter
What particle(s) is it made of?

Relativistic particles
What is the mass (hierarchy) of neutrinos?
Are there additional light particles?
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Single field inflation
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Multi-field inflation
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Non-Gaussian fluctuations from inflation
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WMAP satellite: fnr, = 37 +19.9 (10)

Planck satellite: fnr, = —0.9+5.1(10)

Both consistent with zero (20)

WMAP Collaboration, Bennett et al. (2013)
Planck Collaboration, Akrami et al. (1905.05697)
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SNR2 ~ Number of modes ~ Volume

= Use 3D distribution of galaxies to improve constraints
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The distribution of galaxies

Single-field inflation
Galaxies evolve from normally distributed initial conditions

Multi-field inflation

Galaxies evolve from non-Gaussian initial conditions with enhanced peaks
We are looking for a 5000x smaller signal

= - -

fnr, = 5000

Dalal et al. (2007)
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How to measure this signal?

Count #peaks

Count #voids

Measure histogram of the galaxy number density
Measure skewness, kurtosis, etc

Measure skewness of all 3D Fourier modes

+ Many more ideas proposed in the literature

fxz = 5000
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Some challenges

v Signal is tin
J g y

fni, = 5000

' Data is complicated, nonlinear function of initial conditions
» = Not easy to model the data

‘/VA Data is not normally distributed
= What is the optimal data analysis method?
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Other questions suffer from similar challenges

Cosmic inflation
What particle physics model led to the rapid expansion?
How did our Universe begin?

Dark energy
What causes this 2nd epoch of rapid expansion?
Is it a cosmological constant? Is General Relativity broken?

Dark matter
What particle(s) is it made of?

Relativistic particles
What is the mass (hierarchy) of neutrinos?
Are there additional light particles?
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Power spectrum as a summary statistic

1 f
Power spectrum P(k) = N (k) Z 0(k)|?
7k, | k|=k

Squared size of fluctuations

|~ Measurement

Power spectrum
Sample variance
(error on the mean)

Wavenumber k (~ 1/scale)
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Power spectrum as a summary statistic

1 f
Power spectrum P(k) = N (k) Z 0(k)|?
7k, | k|=k

Squared size of fluctuations

Multi-field inflation
|_— Measurement

Power spectrum
Sample variance
(error on the mean)

Wavenumber k (~ 1/scale)

Multi-field inflation couples peaks to grav. potential, enhancing power at low k
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Divide by expectation for single-field inflation

Multi-field inflation Single field inflation

— Measured galaxy power
(drawn from a normal
distribution with mean
given by dashed curve)

Sample variance
(error on the mean)
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Make a correlated measurement, insensitive to signal

Multi-field inflation Single field inflation
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Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)
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Make another, correlated measurement

Multi-field inflation Single field inflation
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Sample variance cancels in the ratio, so can detect multi-field inflation

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)
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How did this work?

Imagine you come up with a new image compression algorithm

Is it better than JPEG?
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Method 1

a. Ask people to rate JPEG-compressed
images

b. Also ask to rate other images o a; orithm
compressed with new algorithm iy gl

c. Compare ratings to find winner

Subject to sample variance (error of the mean)
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Method 2

a. Ask people to rate same image compressed with JPEG & new algorithm
b. Compare ratings 1-by-1 for each image

Less sample variance (can tell winner with 1 image)
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How to measure the distribution of dark matter?

Measure gravitational lensing of Microwave Background radiation

Pirsa: 21030038 Page 22/54



Lensed Cosmic Microwave Background radiation
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Estimate local magnification / demagnification
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Measured magnification map

Planck Collaboration: Planck 2018 lensing
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Forecasts for future experiments

~b5x better than current constraint, factor ~2 from SVC

10!

Largest angular scale

MS & Seljak (2018); arXiv: 1808.07445, 1907.08284; 1907.04473, 1908.01062; 1902.10541, 1908.07495
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Challenge

Initial conditions

® Grav. evolution
. Gas physics

Physical
params.

Complicated,
nonlinear

Data (galaxies)

Observed
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Standard approach

Initial conditions

L
%

® Grav. evolution
. Gas physics

Nuisance
params.

Physical

Data (galaxies)
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Power spectrum as a summary statistic

Fitted parameters:
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Beware of overfitting: 50 data points, 10 free parameters

Perko, Senatore, Jennings & Wechsler (arXiv:1610.09321)
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Alternative: Predict 3D data given initial conditions

Initial conditions Data (galaxies)
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® Grav. evolution
. Gas physics
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Benefits

Benefits of using 3D fields rather than summary statistics

+ No overfitting (6 parameters describe >1 million galaxy positions)
+ No sample variance, can use small volumes with high resolution
+ ‘All" n-point functions measured simultaneously

+ Easy to isolate mistakes of the model

+ Useful for field-level likelihood and initial condition reconstruction

MS, Simonovié, Assassi & Zaldarriaga (2019)
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Synthetic galaxies

Initial conditions

Model prediction

MS, Simonovi¢, Assassi & Zaldarriaga (2019)
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Simulation

15363 = 3.6B particles in a 3D cubic box

30723 = 29B grid points for long-range force computation
4000 time steps

5 realizations

1M CPU hours on a local cluster (~2000 CPUs) using MP-Gadget

N-body code
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Comparison with linear regression model

Simulation

Linear model

Reasonable prediction on large scales

Missing structure on small scales

MS, Simonovi¢, Assassi & Zaldarriaga (2019)
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How to improve?

Include all terms allowed by symmetries (effective field theory)

blam, (X) -+ b252 (X) + tidal term —+ bsé?n (X) + -

m
3

Desjacques, Jeong & Schmidt: Review of Large-Scale Galaxy Bias (2018)

Fit coefficients b; using least-squares regression
MS, Simonovi¢, Assassi, Zaldarriaga (2019)

In practice:

- Run independent regression for each Fourier mode shell

- Fit resulting regression coefficients bi(k) with 6-parameter model
- Orthogonalize operators for robust numerics and interpretation

- Include large bulk flows nonperturbatively (see later)
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Comparison with nonlinear model

Simulation

Cubic bias [T

Nonlinear

e \ L e |
f, g | regression
Nt Lo

';- - L ] model
: .

Much better agreement than linear model

MS, Simonovié, Assassi, Zaldarriaga (2019)
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How to improve?

Include all terms allowed by symmetries (effective field theory)

blam, (X) -+ b252 (X) + tidal term —+ bsé?n (X) + -

m
Desjacques, Jeong & Schmidt: Review of Large-Scale Galaxy Bias (2018)

Fit coefficients b; using least-squares regression
MS, Simonovi¢, Assassi, Zaldarriaga (2019)

In practice:

- Run independent regression for each Fourier mode shell

- Fit resulting regression coefficients bi(k) with 6-parameter model
- Orthogonalize operators for robust numerics and interpretation

- Include large bulk flows nonperturbatively (see later)
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Mean-squared model error
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This white noise is crucial to avoid biasing physical parameters

MS, Simonovié, Assassi, Zaldarriaga (2019)
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Mean-squared model error
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This white noise is crucial to avoid biasing physical parameters

MS, Simonovié, Assassi, Zaldarriaga (2019)
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How to improve?

Include all terms allowed by symmetries (effective field theory)

blam, (X) -+ b252 (X) + tidal term —+ bsé?n (X) + -

m
Desjacques, Jeong & Schmidt: Review of Large-Scale Galaxy Bias (2018)

Fit coefficients b; using least-squares regression
MS, Simonovi¢, Assassi, Zaldarriaga (2019)

In practice:

- Run independent regression for each Fourier mode shell

- Fit resulting regression coefficients bi(k) with 6-parameter model
- Orthogonalize operators for robust numerics and interpretation

- Include large bulk flows nonperturbatively (see later)
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Bulk flows

Model with wrong bulk flows Model with correct bulk flows

TeRE Ad

Correct bulk flows are crucial for small pixel-level residual

Cannot Taylor expand because bulk flows are large

Oz + ) # 6(x) + pVo(x)

MS, Simonovié, Assassi, Zaldarriaga (2019)
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Tried many other nonlinear models

3-6x larger model error

INL + 12031 + tg,Ga[ONT
Fo[01]) + t267 +tg,Ga01]
B 7 0ne + 20K t6,Ga[01]
Bidy + B2 + 5> Go

&
Q
w
O
=
S
a
S
I

| 1'0t'*
Fourier wavenumber k

Our model allows using small-scale data (~10x larger volume)
Main reason: Bulk flows included nonperturbatively

MS, Simonovié, Assassi, Zaldarriaga (2019)
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Real data

Same model as recent EFT analyses of BOSS power spectrum

D’Amico, Gleyzes, Kokron et al. (1909.05271)
Ivanov, Simonovi¢ & Zaldarriaga (1909.05277)
Troster, Sanchez, Asgari et al. (2020)

]

@ spss

Model power spectrum is evaluated using FFTLog trick to speed
up MCMC chains (reduce 2D loop integrals to 1D FFTs)

Hamilton (2000)

MS, Vlah & McDonald (2016)

McEwen, Fang, Hirata & Blazek (2016)
Cataneo, Foreman & Senatore (2017)
Simonovié¢, Baldauf, Zaldarriaga et al. (2018)
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Competitive for some parameters

mm Galaxies (SDSS)
== CMB (Planck 2018)

Similar precision
as CMB

L 1 L 1 L L 1 1 N
0.24 0.28 0.32 0.36 64 76 0.60 0.75 0.90
0m Og

Amount of DM Expansion rate rms of fluctuations

Ivanov et al. (arXiv:1909.05277)
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Redshift space

Distance to galaxy inferred from redshift = true distance + velocity

Model velocity field in Lagrangian perturbation theory to get a field
level model for galaxies in redshift space
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Figure 1: 2D slice of the linear density, Zel'dovich density, and x- and y-component of the continuous
velocity field predicted by Eq. (2.12) for ny.x = 1. The predicted velocity field is coherent over tens of
Megaparsecs, with most regions flowing towards the cluster and filament in the center of the slice. To
generate the Zel’dovich density and the velocity prediction, 1536% particles in a Lagrangian space box
with L = 500 ~'Mpc were shifted by the first-order displacement. All fields are evaluated at redshift
z = 0.6.

MS, Simonovi¢, lvanov, Philcox & Zaldarriaga (arXiv:2012.03334)
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Comparison with simulations

Model describes bulk flows in simulations well, but does not
capture large velocities in highly clustered regions (satellites):

Simulation velocity Model Residual

f\ e ’
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1 I I I
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MS, Simonovic, Ivanov, Philcox & Zaldarriaga (arXiv:2012.03334)
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Comparison with simulations

Model captures large-scale flows, but not Fingers of God

zZ-space sim. z-space model

Real-space sim. Real-space model
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Comparison with simulations

Functional form of model error power spectrum:

Ce1l = 0.599

Perr(}"-. /L) = ? Cel T (‘-E,.'ifﬂ- T cez3 = 245 (7)

l"M 1h I\-'Ip(-_1

10*
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— Error A |
1014 — Error—const. _',.
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Perko, Senatore, Jennings & Wechsler (arXiv:1610.09321)
MS, Simonovié, Ivanov, Philcox & Zaldarriaga (arXiv:2012.03334) () https:/github.com/mschmittfull/perr
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Additional thoughts from 3D tests of models

» \Weighting galaxies by their mass can reduce model error 10x

* Removing 13% of galaxies gives 2x smaller rms RSD displacement,
enabling higher model Kmax
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Additional thoughts from 3D tests of models

» Weighting galaxies by their mass can reduce model error 10x

* Removing 13% of galaxies gives 2x smaller rms RSD displacement,
enabling higher model Kmax

How to find weights/detect outliers?

Solve as optimization problem with
custom-made objective (e.g. maximize
quadrupole/monopole ratio at high k to
suppress FoG and shot noise)

Note: We can weight galaxies by any function of local observables
and still use the same galaxy bias model

Inspired by Obuljen, Percival & Dalal (2020)
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Test on synthetic dark matter data

- Analytic
25SPT field
N-body DM

10t 107t

e —
k [hiMpc] k [hiMpc]

MS & Moradinezhad Dizgah (2021) O https://github.com/mschmittfull/skewspec
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Galaxy skew-spectra in redshift space

Cross-spectra between 14 quadratic fields &,, and galaxy density
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MS & Moradinezhad Dizgah (2021)
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Galaxy skew-spectra in redshift space

Cross-spectra between 14 quadratic fields &,, and galaxy density
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MS & Moradinezhad Dizgah (2021)
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Test on synthetic galaxy data

maas
10-!

k [A/Mpc] k [h/Mpc]

MS & Moradinezhad Dizgah (2021) O https://github.com/mschmittfull/skewspec
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Code & Simulations

® Field level model O https://github.com/mschmittfull/perr
® Skew—spectra O https://github.com/mschmittfull/skewspec

® |terative reconstruction O https://github.com/mschmittfull/iterrec

All based on nbodykit ) nttps:/github.com/becp/nbodykit

For questions email mschmittfull@gmail.com
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