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Abstract: Thetalk will be based on my latest two papers 2103.02616 and 2103.05700.& nbsp;

In the first part, 1 will present my GRMHD simulation of a neutron-star post-merger disk with neutrino fast flavour conversion included
dynamically. The fast conversion of neutrinos can lead to flavour space equipartition ubiquitously on the time scale as short as 1ns. Due to the
reduction of the number density of electron and anti-electron neutrino, the ejecta becomes more neutron rich. The final r-process nucleosynthesis
sees an enhanced abundance of heavy elements close to the solar values. A similar effect may alow for increased lanthanide production in
collapsars.

In the second part, | will present fast magnetic energy dissipation through the collision of Alfven waves with anti-aligned magnetic fields. The
collision produces a current sheet sustained by an electrical field breaking the MHD condition. Particles entering the current sheet are accelerated
following a relativistic variation of Speiser orbit and escape with higher energy. This mechanism can dissipate a large fraction of wave energy,
nearly 100% when the wave magnetic field equals the background magnetic field. The fast dissipation may occur in various objects, including
magnetars, jets from accreting black holes, and pulsar wind nebul ae.
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Outline

This talk is based on my two latest papers:

 Neutrino Fast Flavor Conversions in Neutron-star Post-Merger Accretion Disks
(arXiv: 2103.02616)

- Fast dissipation of Colliding Alfven Waves in a Magnetieally Dominated Plasma
(@arxXiv: 2103.05700)
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Neutrino Fast Flavor Conversions in Neutron-star Post-Merger
Accretion Disks

with Daniel Siegel
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GW170817: The first multimessenger observation with gravitational wave
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Kilonova emission
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Blue component:
neutron-poor (Ye>0.3)
ejecta.

Red component: low
velocity (0.1-0.2¢)
neutron rich (Ye<0.3)
ejecta.
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Neutron-star post-merger disk
- Hot dense environment with density up to 1012 g/cc.

- Neutrinos are produced and are optically thick close to the central object with
luminosity up to 105253 erg/s.

« Neutrinos can change nucleosynthesis through weak interactions.

 Previous simulations use simple approximation, e.g. leakage scheme (Siegel
2018).

« Only Monte-Carlo transport by Miller et al. (2019).
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Neutrino fast flavour conversion

-+ Neutrino density matrix with flavour eigenstates as the bases
k

:fuc+fVXI_|_fchux(3 S)

S* —s

Qv 2 2

- Hamiltonian

H=%4 —v"A,% — 32:Gr [v"v,p,E? dEAQ

- The self-interaction term induces the exponential growth of the off-diagonal term (flavour
conversion) with growth rate

Py = V2Gpn, /h=1.92 x 10° ({gar=s) s~

1031cm—3

- ~ns time in the neutron star post-merger disk!
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GRMHD simulation: neutrino radiation transport

- Include neutrino transport using the general relativistic M1 method (Shibata et
al. 2011, Roberts et al. 2016).

- We trace 4 specles with 6 energy bins between 0-60MeV.

- In the fluid dynamics equations, the evolution of the nth moment depends on
the (n+1)-th moment (closure problem).

- The M1 scheme treats the radiation field as a fluid and assumes the second
moments given by a proposed analytical relation from the first moments.
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GRMHD simulation: fast flavour conversion

- Calculate the maximum growth rate @ for each grid following Izaguirre et al.
(2017): set flavour equipartition among neutrinos and anti-neutrinos separately

if 1/ 107 7s.

- Start with an equilibrium torus of 0.07Msun around a 3Msun black hole with
spin 0.8, Ye=0.1 and evolve to 400ms. i Mass Density

0

-100
- We compare two simulations with (FC) and without (NFC) fast flavour

conversion.
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Disk evolution

After an initial stage of relaxation, the disk relaxes into a quasi-steady turbulent
state with accretion rate ~1Msun/s above the r-process threshold.
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GRMHD simulation: fast flavour conversion

- Calculate the maximum growth rate @ for each grid following Izaguirre et al.
(2017): set flavour equipartition among neutrinos and anti-neutrinos separately

if 1/ < 107 s,

- Start with an equilibrium torus of 0.07Msun around a 3Msun black hole with
spin 0.8, Ye=0.1 and evolve to 400ms. i Mass Density

0

-100
- We compare two simulations with (FC) and without (NFC) fast flavour

conversion.
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Disk evolution
- At early stage, fast flavour conversions emerge where neutrinos stream freely.

- Later, fast flavour conversion becomes ubiquitous with smaller growth rate.
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Comparison between with and without fast flavour conversion
With fast conversion, the ejecta are more neutron rich.
The inner part of the disk keeps Ye low through self regularization.

The Ye gradient is more prominent without fast conversion.
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Comparison between with and without fast flavour conversion

Electron and anti-electron neutrinos are more copiously emitted than other
Species.

Fast flavour conversion essentially reduce their densities.
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Comparison between with and without fast flavour conversion
With fast conversion, the ejecta are more neutron rich.
The inner part of the disk keeps Ye low through self regularization.

The Ye gradient is more prominent without fast conversion.
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Comparison between with and without fast flavour conversion
The unbounded tracer particle is input into SkyNet for r-process calculation

High energy neutrinos reduce the lanthanide production. Fast conversion can
restore the abundance close to solar values.
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Conclusion

- We performed GRMHD simulations with neutrino fast flavour conversion
included dynamically.

- The post-merger disk has high accretion rate ~1Msun/s and shows clear radial
gradient of Ye indicating early bluer kilonova emissions turning into redder
emissions, similar to GW170817.

-—
- Fast flavour coriversion is found to boost the r-process lanthanide abundance
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Fast dissipation of Colliding Alfven Waves
Dominated Plasma

with Andrei Beloborodov, Lorenzo Sironi
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Strongly Magnetized Systems

Many astrophysical systems are thought to be strongly magnetized including
magnetars, black hole corona and jets and pulsar wind nebula.

Perturbations of the magnetic field produce Alfven waves.

Ultrafast flares fromn magnetars and black hole coronae require fast dissipation
of magnetic energy to particles.

Previously suggested mechanisms are mainly turbulence and magnetic
reconnection.
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TRAPPED
FIREBALL

Dissipation of Alfven waves powers the SGR
(Thompson & Duncan 2001)

2 3 10 12
z/R.

Pulsar (Philippov & Spitkovsky 2014, Chen &
Beloborodov 2017)
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Reconnection in the accreting BH corona
(Parfrey et al. 2014) )
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Waves in MagnetoHydroDynamics

- MHD is applicable when the scale is much larger than the plasma scale

- The equations require two conditions: E < Band E- B =0

- MHD reduces to Force-Free Electrodynamics in the limit of high magnetization

- Waves in MHD: Alfven mode @ = | k,| and magnetosonic mode
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Dissipation in turbulence and reconnection

- Turbulent dissipation acts on time scales much longer than a single wave
crossing time (Li et al. 2019

Relativistic reconnection has rate 0.1c¢, and dissipates ~50% of magnetic
energy (Uzdensky et al. 2010, Sironi et al. 2015).
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Collision of Alfven waves with anti-aligned magnetic fields

- Uniform Bx=Bo and waves amplitude A=|By|/Bo. Linear superposition can
induce E>B for A>0.5.
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- In FFE simulations, one reduces E field by hand and assumes this process
reflects the realistic fast dissipation (McKinney 2006, Spitkovsky 2006).
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Wave Dynamics in the Presence of Plasma

+ Particles are accelerated to form a current sheet and reduce the electrical field close to Bo.

- Incoming waves are reflected with amplitude |A-1|. Across the current sheet, By reverses
direction with magnitude 2A-1.

- The energy difference between incoming and reflected waves are dissipated to particles with
fraction f = (24 — 1)*/A%.
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Particle Motion and Acceleration

- The particle follows a relativistic variation of Speiser
(1965) orbit in the currerlt sheet of size A.

- The particle is first accelerated to develop v-. ol pan—

Fx=vzBy points towards the centre, confining the i
particle. 2]

E-*v; keeps doing positive work, accelerates the o i
particle. i —

+ As the particle finishes half of the gyration, vz and Fx 2l
reverses sign, pushing the particle outward. o 0w w0  w s w0

- The particle escapes with energy gain y ~ Azao.

Pirsa: 21030032 Page 27/37



Particle Motion and Acceleration

- The particle follows a relativistic variation of Speiser
(1965) orbit in the current sheet of size A.

- The particle is first accelerated tQ develop V. £, I i

Fx=v-By points towards the centre, confining the 0
particle. HE
1

E-*v; keeps doing positive work, accelerates the
particle.

+ As the particle finishes half of the gyration, vz and Fx i .
reverses sign, pushing the particle outward. o w w0 @ & 0w

- The particle escapes with energy gain y ~ Azao.
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Particle Motion and Acceleration

Alternatively, the magnetic vector field can
be viewed as an effective potential.

160 e
Particles first climb the potential and then o SR
return to the origin. e S
The current sheet is self-regularized to o
give A ~ clw, )
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Kinetic Simulations —1D

- Particle-In-Cell code TRISTAN-MP.
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Kinetic Simulations —1D

- Particles stream into the current sheet and escape, forming a steady state.
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Kinetic Simulations —1D

Pirsa:

Particles stream into the current sheet and escape, forming a steady state.
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Kinetic Simulations —2D

y direction is along the perturbed magnetic field
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Kinetic Simulations —2D

Bx stabilizes the current sheet against tearing instability. Magnetic
reconnection is activated for A > 2.
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Dissipated fraction

1D dissipation agrees with analytical calculations f = (24 — 1)%/A?, ~100%
efficiency for A=1.

2D, dissipation of large amplitude waves is dominated by normal reconnection
with dissipated fraction ~20%.
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Conclusion

- We propose a fast dissipation of magnetic energy through the |
waves. :

- 1D kinetic simulations agree well with analytical calculatiohs.'
small amplitude waves, but are dominated by magnetic reconne
waves. .

- This mechanism can operate in strongly perturbed magnetized plasmas éround compact
objects, including jets from black holes, coronae of accretion disks, magnetospheres of

neutron stars, and pulsar winds.
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ANY QUESTIONS?

Thank you for your attention!
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