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& nbsp;

Pirsa: 21030031 Page 1/27



Pirsa: 21030031

Wolfgang Wieland

IQOQI
Austrian Academy of Sciences

Institute for Quantum Optics and Quantum Information

Perimeter Institute for Theoretical Physics
Online Seminar on Quantum Gravity

18-03-2021

Page 2/27



Introduction and Motivation

B Subsystems and double null foliation

F1 Resulting phase space

1 Outlook and conclusion
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Why quantum gravity in causal regions? Different views:

m Mere gauge fixing: Represent
diffeomorphism equivalence class of
states [Wo] by states on the light cone.

m Coarse graining: Build observables by
successively gluing gravitational T,
subsystems.

m Soft modes/edge modes: In gravity, (Dirac) observable such as
energy, momentum, angular momentum, center of mass, ... are
analogous to charge in QED. Do we have superpositions of such
charges in nature? Can we build them in the lab? Can they help us
understand microscopic origin of black hole entropy?

[Strominger, Perry; Godazgar, Harlow, Wu; Prabhu, Chandrasekaran, Flanagan, Bonga;
Carlip; Giddings; Freidel, Donnelly, Speranza, Riello, Geiller, Livine, Dittrich, Pranzetti; Grumiller, Seraj, Barnich, Compére,...]
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A boundary excites otherwise invisible gauge DOF.

m Action Su = —3 [,, *F' A F defines both EOM
and pre-symplectic potential © on field space

Oz = —J x(dA) A dA,
Qp = d]@BE,
m U(1) gauge transformations
o [A] = —dA.

m Large gauge transformations are integrable

5@:] = —0=(60,), Qu=$ AxF

A large gauge transformations 4 : ,\| 55 7 0drags a point on phase-space
into a physical inequivalent configuration.
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To understand how gravity couples to boundaries, it is useful to work with
differential forms rather than tensors since there is a natural notion of
projection onto the boundary, namely the pull-back ¢* : T*M — T*(0M),
which does not require a metric.

Fundamental configuration variables

o Y |
Gab = NapE€ a€ p,

VAYP* =dAyY*+ A% AP,

Palatini action
1

S[A, €] = , A FP[A].
A€l = T | Hea heg) A F(A]
Sas

Symplectic potential
1

Oy = Y5 AdAP,
> 16?‘1’0,/;3* A

N.B.: boundary terms and conditions will be more carefully studied below.
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Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz
transformations.

Lorentz transformations
Sale®] = A%e’,  Aap=—Apa
SA[Aag] —_ —VAaﬁ

Lorentz charges are integrable at full non-perturbative level.
QE(SA,5)|EOM = —46[Qa].
QA[Z] = *EQBAQ'S.

B lﬁﬂG o5

NB: Such Lorentz charges do not exist in metric gravity (on the ADM

phase space). Physically meaningful perhaps only if we add fermions
(defects of torsion).
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Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz
transformations.

Base diffeomorphisms lifted upwards into the Lorentz bundle

6¢[e®] = V(§1e™) + €a(V A ),
0¢[A%5] = E1F .

Diffeomorphism charges

1

Q= (3¢9 |gom = To- x

£1x s ASAP L 5P,

Trivially integrable at linear order in perturbations
=84+ ["=81[%&, fap=Tpa

_ & - % (o pf]

NB: for an asymptotic time translation €2 = [a% ", the linearised charge P,

returns the ADM mass for a linearised solution f,5 = 6(r—1!) around é> = dz°.
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m |n gravity, time evolutiont — ¢t + e can
be understood as a large gauge

transformation. Tei o

m |t seems reasonable to expect the
Hamiltonian is the generator for such
a gauge transformation:

H[Z] = P[Z] = ﬁ : dv® €8T, [7).

m We assume that P: generates the symmetry algebra
{Pe, P} = —Peen + €, €.
m However, that's at odds with the fact that a system may loose mass
via gravitational radiation
d d

AR 2:_ = =
M = ZH ={H,H} =0,

1 O {3
- < 0.
4?_(05{5301 Q6% < 0

m ... unless, we allow for an explicit time dependence in the
Hamiltonian ...
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Trivial toy model: subsystem S that interacts with its environment E
through some boundary degrees of freedom w;(¢).

Stpod'for) = | "t (pu ()3 () ~ Holpi(),4° (1)) ~ Honelpu(8), 4" O (0)]).

B Subsystem has symplectic two-form
Qg = dp; A d]qzl

B Subsystem Hamiltonian is explicitly
time-dependent
H = Holpi, q'] + Hint[pi, ¢ w1 ()]

m Phase space: all trajectories (p;(t), ¢*(t)) 3 Pu, ) gener{ated by the
Hamiltonian flow for fixed wr()).

m Space of physical histories: all possible configurations of bulk plus
boundary fields | | , P, = #pnys.
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In GR, there is no preferred foliation and no preferred time variable t. The
distinction between phase space, boundary fields and the space of
physical histories becomes rather subtle [Harlow, Wu, Freidel, Pranzetti,
Geiller, ww, Barnich, Compere, ...].

In this context, the covariant phase space approach [Ashtekar, Witten,
Wald, Zoupas] allow us to infer the on-shell value of the Hamiltonian
directly from the action.

For our simple toy model

Stpad'for) = | at(p (O3 ) — Holp (0,0 ®)] — Hoalpu(®), ' @)l (9)])-

If § € THpnys is @ tangent vector to the space of physical histories,

=—as(S.0)| o+ OHumlpi,'lwr®)] 1., oy

’
dt ﬁ?'phys 8&)[ ‘thys

S[H]|,,

phys
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To characterise a gravitational subsystem,
two choices must be made.

B A choice must be made for how to extend
the boundary of the partial Cauchy
hypersurface X into a worldtube 4.

B A choice must be made for what is the flux
of gravitational radiation across the
worldtube of the boundary, i.e. a

(background field, c-number) that drives s °

the time-dependence of the Hamiltonian.

N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can
forget about the second issue. The Hamiltonian will be automatically conserved.
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Most common gauge choices:

m Retarded time u and radial coordinate r.

m Vector field k* = 82 is null, and r is an
affine parameter.

m Vector field k% is surface forming,
k., = —V,u.

m Extend k® into null tetrad
(k*,£%,m?,m*), which is parallel
propagated along the null rays k°.

m NB: the dual null vectors £ are not surface orthogonal.

m This is disadvantageous for our purpose: we want to assign a phase
space to finite regions bounded by ingoing null surfaces, then take
the limit to null infinity afterwards.
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Instead, we use a double null foliation:

m Retarded time u and inverse conformal
factor p = Q7' (advanced time).

m Vector field k¢ = 82 is null, and r is an
affine parameter: p =r + 6(r™1).

m Vector field k% is surface orthogonal and
ko = —Vau.

m Extend k° into null tetrad (k%, €%, m®, m?)
such that vector field ¢* is surface
orthogonal and £, « V,p.

m U(1) gauge condition m,k®V,m? = 0.

m This is advantageous for our purpose: for every p, we have a region
A, bounded by a null surface ., (and two disks at bottom and top).
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Spindyad (k4,¢4) and associated Newman - Penrose tetrad
(ik4kA 10427 12k kA7) = (K%, 0%, m®, m°).

Outgoing shear and expansion
i 2 .
ﬂ(k) =q bvakb = ; +@('F 2),
o’ (u, 2, 2)
‘?‘2

O(k) = m”‘mbvakb = o @(T‘_S).

Ingoing shear, expansion and non-affinity

Peeling and Weyl spinor

Fap = VYapcpE®", Zap= -2*6(,40 Nepyc’s

W, =Wy, 4,07 .. 084t | 4 = 6(r°0).
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On a null surface it is useful to work with forms rather than vectors.
Given a tetrad ¢, we have a hierarchy of p-forms: e*! A --- A e“®.

m Directed area two-form 28 = e> A €

e )
R

1 o
) = —glra sle A

m On a null surface ', there always exists a
spinor ¢# : W — C? and a spinor-valued
two-form n,, € Q%(A : C?) such that

O aBab = L(ATIB)ab-

m The Lorentz invariant spin (0,0) scalar e = —ina£* defines the
orfenfed area of any two-dimensional cross section & of #

Area[®| = f g = —i/ nal?.
% %
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Bulk plus boundary action.

m Tetradic Hilbert - Palatini action in the bulk,

SalAe] = [SEG L zAB[e]AFAB[A1] 1

m SL(2,C)-invariant boundary action,

i 1
Sy[Aln, Llg] = [ﬁ [mA A (D— §x)eﬂ] + cc.

o

i
m bulk plus boundary action
S[A,eln, tlg] = SalA, el + Sx[Aln, £|g]

m boundary conditions: é[g]| = §[a, £%, ms|/~ = 0.
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Boundary data: null generators, non-affinity, co-dyads

PeVH, £mg=0, £Vl =L00% gab=2m(alis).

Boundary conditions: §[».,£*,m.]|/~ =0
m vertical diffeomorphisms [p* 34, £2, p*ma] ~ [a, €2, m4]

m dilations [, 8%, m4] ~ [5ta + Vo f, e €3, m,]

- : il 3
m complexified conformal transformations [s,, £2, ma] ~ [sa,e2 A FT2 12 eAm,]

m Shifts [5,,£%, mg] ~ [35 + (g + Mg, £%, M4

The equivalence class [g] = [#., 4%, m.]/~ Characterises two degrees of
freedom per point.

N.B.: Sometimes [k, £?]/~ is chosen as a universal structure. This is not done here.
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m Covariant pre-symplectic potential along the portion of the null
surface between %, ant &
1

1
C")_/y‘ = _8‘;T—G » (E A dx—kadf de + 5’19(3)!&' N dE)-l—

7 _ s
i SﬂG[V(J(E)kAmAdm_CC')-

m If # is anisolated horizon # = A this simplifies to

1
@mz—/ d(k,VE%).

m On the other hand, in the limit # — #7 to null infinity, we recover
the symplectic structure for the two radiative modes,

Tal 1 T
V24 (81,02) = G /. du A €(616 820 + cc.).
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Covariant pre-symplectic potential for the partial Cauchy surfaces:
X

Oy = [— ! V?g-T)Ad]fA -+ : f YAB /\d]AAB] + cc.
€ 2

8t 8@

Gauge symmetries:

m Simultaneous SL(2, C) transformations of bulk plus boundary fields.
m Small diffeomorphisms that vanish at the corner 5”‘|(€ =

m U(1) transformations of the boundary spinors.
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m Tangential diffeomorphisms (for (;““LE € T®) are integrable

LAl g = EaF4g,

Q _‘Z,(S :_JJ 3 for:
= (e, 90) ¢[€] 2l {gngB =&V (ZaB) + V(E1Z aB).

m Dilatations of the boundary spinors are integrable

o4 = +5£4,

O5(6x,08) = —6KA[#], for: 1{

6ANAab = — 37 Aab-
diffeomorphisms:  J¢[€] = 3 lG / ['UAQ{-:EA — cc.], for all £2|, € T€.
T I

dilatations: K\[€] = _16er f ,\[nAﬁA — cc.] = ﬁ f Ae.
€ €
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m Supertranslations £° € [¢°] generated by time-dependent
Hamiltonian

[He[0%]] = Qs (Ze, 6) + ¢ £204(5).

m Corner term results from time-dependence.
m Recall toy model with time-dependent parameters w;(t).
m If § € T#,1nys is a tangent vector to the space of physical histories,

OHint[pi, q' w1 (t)) 6[wr (t)]

awf thys

S[H]|,

phys

=i (%’5) i T

1

Bondi energy: Ms(u) = e
2

@0 (T +0°%° - 2°5°),

Free energy: pli}ngoé[Hg[%p,u]] — _ﬁéébg EH:] + 6 [ Mg (u)].
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A boundary breaks the gauge symmetries in the bulk and turns them into
physical boundary modes (boundary gravitons, edge modes, pseudo
Goldstone boson ...).

Physical phase space: Py = [P x P/ gauge

1

m In spacetime dimensions d < 4, there are no
degrees of freedom in the bulk. Physical phase
space is the phase space of boundary field
theory alone.

Treat gravity as a time dependent Hamiltonian
system. Remove the radiative modes from the
Cauchy hypersurface M. Encode them into
auxiliary background fields. Probably enough to
understand BH entropy at the full
non-perturbative level.

Que(8,Le) = 6M — Q8J — k6A = 0.
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