Title: The structure of Gamma Ray Bursts: beyond GRB 170817

Speakers: Paz Beniamini

Series: Strong Gravity

Date: March 11, 2021 - 1:00 PM

URL: http://pirsa.org/21030026

Abstract: Combining information from the first gravitational wave detected gamma-ray burst, GRB 170817 with observations of cosmological GRBs holds important lessons for understanding the structure of GRB jets and the required conditions at the emitting region. It also re-frames our understanding of more commonly observed phenomena in GRBs, such as X-ray plateaus, and sets our expectations for future observations. I will present different lines of argument suggesting that efficient gamma-ray emission in GRBs has to be restricted to material with Lorentz factor > 50 and is most likely confined to a narrow region around the core. GRB jets viewed slightly beyond their jet cores, result in X-ray plateaus that are consistent with observed light-curves and naturally reproduce correlations between plateau and prompt emission properties. For jets viewed further off-axis (that are expected to be detected as future GW triggered events) we provide new analytical modelling that reveals two different types of light-curves that could be observed (single or double peaked) and outlines how the underlying physical properties can be recovered from such observations.

Pirsa: 21030026 Page 1/46

The structure of Gamma Ray Bursts: beyond GRB 170817

Paz Beniamini
Caltech → Open University of Israel

In collaboration with: Jonathan Granot, Ramandeep Gill, Ehud Nakar, Maria Petropoulou, Rodolfo Barniol Duran, Dimitrios Giannios, Raphael Duque, Frederic Daigne and Robert Mochkovitch

Pirsa: 21030026 Page 2/46

Gamma ray bursts

- most extreme explosions in nature (huge luminosities released during seconds)
- Formed by collapse of massive stars or NS-NS (NS-BH) merger
- "prompt" extremely variable emission peaking at ~0.1MeV and typically lasting tens of seconds
- Followed by a longer and smoother "afterglow", gradually decreasing in frequency with time and observed up to years after the burst

Pirsa: 21030026 Page 3/46

- Main open questions:
- 1. What is the progenitor?

Black hole

Rapidly rotating magnetar

Pirsa: 21030026 Page 4/46

Introduction

- Main open questions:
- 1. What is the composition of the jet?

Poynting flux (magnetic fields)

Simulation: Koppitz & Rezzolla

Pirsa: 21030026 Page 5/46

Introduction

- Main open questions:
- 1. What is the dissipation mechanism?

Internal shocks

Reconnection

Other?

Neutron – Proton collisions Nuclear collisions Etc.

Pirsa: 21030026 Page 6/46

- Main open questions:
- 1. What is the radiation process?

Synchrotron

Photospheric

Simulation: Lazzati

Pirsa: 21030026 Page 7/46

GRB afterglows

- Dynamics: Self-similar blast wave ultra-relativistic blast wave driving into external density (Blandford & Mckee 76)
- Radiation: Synchrotron from electrons accelerated in the forward shock (Sari, Piran & Narayan 98)

Pirsa: 21030026 Page 8/46

Pirsa: 21030026 Page 9/46

Pirsa: 21030026 Page 10/46

Pirsa: 21030026 Page 11/46

Pirsa: 21030026 Page 12/46

Lessons from the afterglow – Successful narrow jet viewed off-axis

Superluminal motion

Mooley et al 18

Rapid decline post peak

Image from Troja et al 20; See also: Pooley et al. 18, Troja et al. 18, Ghirlanda et al. 18

Pirsa: 21030026

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Pirsa: 21030026 Page 14/46

Lessons from the afterglow – Successful narrow jet viewed off-axis

• Afterglow dominated by angular profile of E and Γ

 Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Pirsa: 21030026 Page 15/46

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Pirsa: 21030026 Page 16/46

Lessons from the afterglow – Successful narrow jet viewed off-axis

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Pirsa: 21030026 Page 17/46

Lessons from the afterglow – Successful narrow jet viewed off-axis

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Pirsa: 21030026 Page 18/46

Pirsa: 21030026

Pirsa: 21030026 Page 20/46

1. Energy in X-ray afterglow roughly correlated with prompt γ-rays

Redshift complete sample

 $L_{X,45} = 11 E_{\gamma,52}$ $\sigma_{log(L_X/E_{\gamma})} = 0.51$ at 1 hour

Image from PB, Nava, Piran 16; data from D'Avanzo et al. 12

All Swift GRBs

 $\sigma_{log(F_{X,peak}t_{X,peak}/\Phi_{\gamma})} = 0.59$

Image from PB & Nakar 19

- 1. Energy in X-ray afterglow roughly correlated with prompt γ-rays Very limiting for energy and Lorentz factor structures:
- Prompt typically dominated by $E(\theta)$, $E_{\nu} \propto E(\theta)$
- Early Afterglow Dominated by $\Gamma(\theta)$, $L_x \propto \left(\frac{t}{t_{dec}}\right)^3 \propto \frac{E(\theta)}{n} \Gamma(\theta)^8$

Pirsa: 21030026 Page 22/46

- 1. Energy in X-ray afterglow roughly correlated with prompt γ-rays Very limiting for energy and Lorentz factor structures:
- Prompt typically dominated by $E(\theta)$, $E_{\nu} \propto E(\theta)$
- Early Afterglow Dominated by $\Gamma(\theta)$, $L_x \propto \left(\frac{t}{t_{dec}}\right)^3 \propto \frac{E(\theta)}{n} \Gamma(\theta)^8$

Pirsa: 21030026 Page 23/46

Evidence from long GRBs

1. Energy in X-ray afterglow roughly correlated with prompt γ-ray Monte Carlo simulations limit allowed models

$$\epsilon(\theta) = \frac{dE}{d\Omega} = \epsilon_0 \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\alpha} & \theta \geqslant \theta_0 \end{cases}$$
$$\Gamma(\theta) = 1 + (\Gamma_0 - 1) \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\beta} & \theta \geqslant \theta_0 \end{cases}$$

 $-\sigma_{\log(E_X/\gamma)}$

Steep structure with rather constant Lorentz factor required

2. Mustn't overproduce GRBs below γ-ray luminosity function peak

$$\epsilon(\theta) = \frac{dE}{d\Omega} = \epsilon_0 \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\alpha} & \theta \geqslant \theta_0 \end{cases}$$
$$\Gamma(\theta) = 1 + (\Gamma_0 - 1) \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\beta} & \theta \geqslant \theta_0 \end{cases}$$

Even if all bursts have L_* at core, lower L bursts are overproduced due to bursts detectable off-axis

Pirsa: 21030026 Page 25/46

Evidence from long GRBs

Combining both constraints:

Steep structure
with rather
constant Lorentz
factor required

Pirsa: 21030026 Page 26/46

3. Even with constant Γ Light-curve evolution extremely peculiar

Even with constant Γ, bursts observable in γ-rays exhibit extended shallow decays / plateaus lasting tens of days

PB & Nakar 19

Unlike any known GRB (barring GRB170817) to date, which decay at least as fast as $t^{-1/2}$

Racusin et al. 16

Pirsa: 21030026 Page 27/46

Evidence from long GRBs

Combining all constraints:

What is the solution?

Pirsa: 21030026 Page 28/46

An alternative possibility: Restrictive γ-ray region

$$E_{\gamma} \propto \Theta(\theta_{\gamma} - \theta)$$

If γ-ray efficiency drops strongly beyond core, results consistent with observations – Shock breakout from a cocoon?

$$\Gamma(\theta_{\rm obs}) \gtrsim 50$$

$$\theta_{\rm obs} \lesssim 1.5\theta_0$$

Pirsa: 21030026 Page 29/46

How can we test this? - Future prospect

Monte Carlo simulations of different structure models

- Most GW detected events up to 220Mpc undetectable in γ-rays
 - Between 1 (breakout) and 10 (steep angular structure) joint detections in next decade
- The distributions of L_{γ} and $heta_{obs}$ can distinguish between models

PB, Petropoulou, Barniol Duran, Giannios 19

Pirsa: 21030026 Page 30/46

X-ray plateaus – Evidence for (mildly) off axis structured GRB jets?

For $\Delta \theta = \theta_{obs} - \theta_c \ll \theta_c$ shallow phase lasts until $\Gamma(\theta_j) \approx \Delta \theta^{-1}$

$$t_p = t_d(\theta_c) [\Delta \theta \Gamma_c]^{(1+2\varepsilon)/\varepsilon} \sim 10^3 \left(\frac{\Delta \theta}{0.02}\right)^{(1+2\varepsilon)/\varepsilon} sec; \ \varepsilon = \frac{1}{2} \ or \ \frac{3}{2}$$

PB, Duque, Daigne, Mochkovitch 20

Pirsa: 21030026 Page 31/46

Pirsa: 21030026 Page 32/46

X-ray plateaus – Evidence for (mildly) of axis structured GRB jets?

Observed correlations naturally reproduced:

To first order $L_p \propto E_{\gamma} t_p^{-1}$ as observed (contrary to energy injection!)

- Fraction of bursts with plateaus naturally reproduced $\frac{\theta_{max}^2 \theta_c^2}{\theta_{max}^2} \sim 0.5$
 - No spectral break between plateau and post-plateau light-curve

Pirsa: 21030026 Page 33/46

Evidence for (mildly) off-axis structured **GRB** jets?

Same interpretation for plateaus explains X-ray flares as de-boosted off-axis prompt emission spikes

Duque, PB, Daigne, Mochkovitch in prep. $\Gamma_c = 300, \theta_0 = 0.1, t_{\text{pulse}} = 30 - 31 \text{ s}$

- Kill two birds with one stone?
- Constraints on structure around the core from cosmological GRBs

Pirsa: 21030026 Page 34/46

Future prospects - Afterglows Likely most common EM counterpart for GW detected BNS merge

Fig. 2. Left: Detectable fraction of radio afterglows among gravitational wave events as a function of the horizon distance $H = 1.58 \bar{H}$. Right: Expected number of joint detections normalized to the case of the O3+VLA configuration. In both panels the full (resp. dashed, resp. dotted) lines correspond to the VLA (resp. SKA1, resp. SKA2/ngVLA) being the limiting radio facility.

Duque et al. 19

• We derive simple intuitive tools for analyzing GRB afterglow lightcurves that can be used to inform numerical fitting attempts

Pirsa: 21030026 Page 35/46

Future prospects - Afterglows

Energy decreases with θ , but material at $\theta \ll \theta_{obs}$ strongly debeam Angle dominating emission is θ_{min} where $\Gamma_0(\theta_{min})(\theta_{obs}-\theta_{min})=1$

Pirsa: 21030026 Page 36/46

Future prospects - Afterglows

Energy decreases with heta, but material at $heta \ll heta_{obs}$ strongly debeam Angle dominating emission is $^{\sim} heta_{min}$ where $\Gamma_0(heta_{min})(heta_{obs} - heta_{min}) = 1$

- Analytic treatment matches numerics
- θ_{min} < θ_{obs} initially constant. Eventually declines as $\theta_{min} \propto t^{-3/a}$

a = PL index of energy angular profile

Pirsa: 21030026 Page 37/46

Pirsa: 21030026 Page 38/46

Pirsa: 21030026 Page 39/46

Pirsa: 21030026 Page 40/46

Future prospects - Afterglows

A critical angle θ_* is defined such that $\Gamma_0(\theta_*)\theta_*=1$

A. $\theta_{obs} < \overline{\theta_*} \rightarrow \Gamma_0(\theta_{obs})\theta_{obs}$ >1 Relativistic beaming important from t=0 Initially dominant material decelerates and dominates flux before lower latitudes become exposed and take over

B. $\theta_{obs} > \theta_* \rightarrow \Gamma_0(\theta_{obs})\theta_{obs}$ <1 Initially dominant angle is significantly smaller than θ_{obs} and gradually decreases with time

Pirsa: 21030026 Page 41/46

Pirsa: 21030026 Page 42/46

Future prospects - Afterglows

- Analytic treatment reproduces numerical simulations and provide easy to use and intuitive tools
- Analytics reproduce Temporal slopes, critical times and critical fluxes
 - n, E, ε_e , ε_B highly degenerate

• $q \equiv \frac{\theta_{obs}}{\theta_c}$, a, b, $\xi_c \equiv (\Gamma_c \theta_c)^2$ robustly constrained from analytics

$$q = \left(\frac{F_{1\text{pk}}}{F_{\text{pk}}}\right)^{\frac{4}{8-a(3+p)}} \left(\frac{t_{\text{pk}}}{t_{1\text{pk}}}\right)^{\frac{3(1-p)}{8-a(3+p)}}$$

$$\xi_{\rm c} \approx 2^{\frac{a}{2(4-k)}} \left(\frac{t_{\rm pk}}{t_{\rm 1pk}}\right)^{\frac{3-k}{4-k}} q^{2(b-1)-\frac{a}{4-k}}$$

$$\xi_{\rm c} \approx 2^{\frac{a}{2(4-k)}} \left(\frac{t_{\rm pk}}{t_{\rm 1pk}}\right)^{\frac{3-k}{4-k}} q^{2(b-1)-\frac{a}{4-k}} \qquad \qquad \xi_{\rm c} = \left(\frac{t_{\rm pk}}{t_*}\right)^{\frac{2(b-1)(k-3)}{8-a-2k}} 2^{\frac{a(1-b)}{8-a-2k}} q^{\frac{4(b-1)(4-k)}{8-a-2k}}$$

170817 as a test case

• Single peaked light-curve + shallow rise & $t_{pk} > 7t_{dec}(\theta_{min,0})$ constrains b, Γ_c , and $\Gamma(\theta_{min,0}) \equiv \Gamma$ of initially dominant material

Analytics

Numerical simulation

$$b \gtrsim 3$$
; $\Gamma_{c,0} > 150$

• $\Gamma(\theta_{min,0}) \approx 5-7$ constrained by 3 independent approaches:

Afterglow light-curve analysis
Superluminal motion – Flux centroid velocity
Compactness constraint from prompt emission

Pirsa: 21030026 Page 44/46

Conclusions

In IGRBs, if energy drops continuously with latitude,

efficient y-ray production restricted to material with $\Gamma > 50$, $heta_{
m obs} \lesssim 1.5 heta_c^{-2}$

- At $\theta_c \lesssim \theta_{obs} \lesssim 2\theta_c$ plateaus are naturally produced by debeamed emission from core and reproduce observed light-curves, correlations with prompt properties
- sGRBs: Structured jet vs cocoon distinguished by L_{γ} and θ_{obs} of joint prompt + GW events
- Analytical tools robustly constrain parameters of far off axis afterglows
- Two qualitative types of afterglows predicted

Pirsa: 21030026 Page 45/46

Pirsa: 21030026 Page 46/46