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Abstract: Agency accounts of causation are often criticised as being unacceptably subjective: if there were no human agents there would be no
causal relations, or, at the very least, if humans had been different then so too would causal relations. Here we describe a model of a causal agent
that is not human, allowing us to explore the latter claim.& nbsp;& nbsp;& nbsp;

Our causal agent is special kind of open, dissipative physical system, maintained far from equilibrium by a low entropy source of energy, with
accurate sensors and actuators. It has a memory to record sensor measurements and actuator operations, and a learning system that can access the
sensor and actuator records to learn and represent the causal relations. We claim that causal relations are relations between the internal sensor and
actuator records and the causal concept inherent in these correlations is then inscribed in the physical dynamics of the internal learning machine. We
use this model to examine the relationships between three familiar asymmetries aligned with causal asymmetry: time's arrow, the thermodynamic
arrow and the arrow of deliberation and action. We consider both classical and quantum agent models and illustrate some differences between the
two.& nbsp;

& nbsp;
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Minimal Causal Agents

arXiv: 1809.03191 GJ Milburn and SS, 2018, Classical and quantum interventions

arXiv: 1910.08985, M Kewming, SS, GJ Milburn, 2020, Quantum Correlations in the Kerr Ising Model
arXiv: 2009.04121 GJ Milburn and SS, 2020, Physical grounds for causal perspectivalism

arXiv: 2007.04426 M Kewming, SS, GJ Milburn, 2020, Designing a physical quantum agent

arXiv: 2007.02217 GJ Milburn, 2020, The Thermodynamics of Clocks

In preparation P Evans, GJ Milburn and SS, 2021, Thermodynamic asymmetries and causal perspectivalism

s.shrapnel@ug.edu.au
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Goal

To describe the physics of simple autonomous agents that have the
capacity to learn cause-effect relationships.

When such an agent has learned these causal relations, it can bring
about certain ends by intervening in a specific manner.

Of particular interest for us is how such agents would differ if they had
access to quantum resources in addition to classical resources.
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Motivation

What can quantum theory teach us about causation?

THIS 1S CALLED Wou, _Fﬂf’ il
p THAN-LIGHT

BELL'S THEOREM.

T Lee aRer COMMUNICATION
) ' 15 POSSIBLE!

BELLS SECOND THEOREM:
MISUNDERSTANDINGS OF BELL's THEOREM
HAPPEN S0 FAST THAT THEY VIOLATE LOCALITY,

xkdc.com
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Motivation

Automated classical causal discovery/inference

shutterstock.com
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What about deep learning?

Spurious correlations
Adversarial examples
Domain shift

Interventional robustness
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Spurious correlations

GradCAM

0.998 melanoma
0.996 naevus

“Deep neural network or dermatologist?” K Young, G Booth, Becks Simpson, R Dutton, S Shrapnel
arXiv: 1908.06612
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Models are not invariant to contextual interventions

El HNE

It's a naevus Now it is a melanoma!
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|dentifying quantum causes?

Quantum analogues of Markov, Faithfulness...!
Very abstract,
Device dependent
Discovery techniques don’t scale well
Role of agent is abstracted away

Use classical machine learning?%3

1. arXiv 1512.0710, Costa and SS, Quantum Causal Modelling, 2016

2. arXiv 1901.05158 SS, Costa, Milburn, Quantum Markovianity as a supervised learning task 2018

3. arXiv 2102.01327 Goswami, Giarmatzi, Monterola, SS, Romero, Costa, Experimental characterisation of a non-
Markovian quantum process 2021
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What about understanding causation from the
perspective of an agent?

Physics of learning agent?

Humans are very messy, complex to model

Minimal Causal Agent?
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Desiderata

Finite,

Open, FJ

Maintained in FFE steady state,

Stabilised by low S source of energy, Leang

Special subsystems: %\f
actuators
Sensors
memory
learning process

Quantum vs classical

-

heat
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Actuators and sensors

heat

I

sensor

Learning
Machine
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An all-optical agent: quantum vs classical

Agent ['Actuator
E (t) \—
4G
CPU (

Slides thanks to Michael Kewming
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Actuator = single photon source

= |b) Quantum = Single photon Fock state

EX¢t) > Classical = weak coherent state
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learning
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Minimise errors
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Quantum: solid line
Classical: dashed line
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Thermodynamics

AF / AUAS

=

Figure 3. The free energy AF of the detector increases if the
photon does work (W) on the atom by stimulating a transi-
tion. If the photon is not absorbed, it is reflected back into
the environment as heat Q.

arXiv: 2007.04426 Kewming, SS, Milburn, 2020 “Designing a physical quantum agent”

arXiv:2006.15416 A B Boyd, JP Crutchfield, M Gu, 2020, Thermodynamic learning through maximum work production”,
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Learning machine

Thermodynamics of neural networks

input

feedback

work

4

ac:%:m
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Activation function
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bias

D=0.7 &

Decreasing noise )
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Limit cycles and perceptron learning
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G. Milburn, 2020, The Thermodynamics of Clocks, arXiv:2007.02217
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Quantum learning via limit cycles

At zero temperature limit no longer thermal noise and classical learning will stop

Only noise is this kind of phase noise: origin is purely quantum phenomena like
tunnelling or spontaneous emission (operate at optical frequencies).

Opportunity to build networks of perceptrons from quantum nano-clocks that run at
very low power.

Page 28/34
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Summary

Accuracy of sensors and actuators is limited by noise:
»quantum case improvements due to metrological advantages

However, the ability to learn requires noise:

»quantum case improvements due to zero-temp learning (can operate at low
power)
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Arrow of causation

-

Learning
Machine

héat
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heat

Thermodynamic arrow

Agents at thermodynamic equilibrium can’t learn
Agents that learn will necessarily increase the entropy of their environment.

A universe in which agents can learn will always appear to those agents to be increasing in entropy.

But reverse the thermodynamics gradient of the learning machine it will no longer learn...learning *JUST IS* lowering
of entropy
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Temporal arrow =

sensar

Learning
Machine

(X
Where is time for this agent? %\f

Let’s just think of rates of learning. e

' 1 t
heat hea

Refractory period of sensors and actuators.
Rate at which the learning machine converges is another rate limiting feature of this model

We have imagined a static environment for most of what | have said so far.

We can of course imagine an environment that is changing, the rate at which the learning system

settles into a steady state must exceed the rate at which the environment is changing.

Does the agent need an internal time?
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Arrow of intervention/action

heat

Intervention comes first?
To know how to intervene you need to measure a system first

Deliberation?
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Summary

Sketch of minimal causal agent
Can’t be in thermal equilibrium with their environment
FFE implies dissipation/fluctuations and constrained by thermodynamics

Time can be relational and local to agent
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