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Abstract: From dark matter to the strong CP problem to the dynamics behind the weak scale, a variety of observations make for a compelling case
that the Standard Model is an incomplete description of subatomic physics. Y et none of these puzzles provides unambiguous guidance on how we
should proceed to find what comes next.

| will argue that this state of affairs calls for a multi-directional strategy in our quest for physics Beyond-the-Standard-Model. Only a combination of

new theoretical developments and original ideas, confronted with the vast array of experiments at our disposal, will provide us with the big picture
we need to move beyond.
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Where are we?
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Why go beyond?

The Standard Model is an incomplete description of subatomic physics

0% |
e Dark Matter ® Neutrino masses

o®

e Matter/anti-matter asymmetry

e Strong CP problem:

Need for a very special boundary condition on SU(3) vacuum angle,
6 < 107'°, to accommodate the absence of neutron EDM

e Weak scale dynamics:

su@) xU@) YO pyem with

2
MPI ete...
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What next?

There are a variety of observations that together make for a
compelling argument that the Standard Model is incomplete

Challenge: provide solutions that can be experimentally probed
® Hard, long-standing problems

® Compelling case in favor of physics Beyond-the-Standard-

Model, but no unambiguous hint of what to expect
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My talk

What I think is a right strategy in our attempt to
discover the theory that underlies the Standard Model

(
| N\
O <

. : 3
Revisit old assumptions O
in light of theoretical . Find all ways to
developments 4 test our ideas

@

Exploring connections between puzzles
to find the guidance we currently lack
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Revisit
old
assumptions
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Effective Field Theory

'EFT paradigm’ underlies most prior work on these puzzles

EFT is a framework to organize a theory in terms of energy scales

Decoupling: The behaviour of a physical system in the infrared (IR) |
is largely independent of its features in the ultraviolet (UV)

Wilson, Kadanoff, 1970s

An EFT is only valid up to some finite energy scale A — beyond,
it needs to be ‘UV-completed’ into a more fundamental theory

details of uv-completion not important at energies B <K A
h
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Effective Field Theory

e.g. QED with a single fermion v with mass m and charge g:

* (9)
1 T . F T O T
L= = FuF" + iy 0, + gAupy' —mipp + 3 | —o
m e e
I irrelevant
‘l -
Effect of irrelevant operators
, E T
102 A ~ (%) <1 for Ep<A
10T
uv effects decouple from IR djhamics
T T 1 | g

10—* 102 1
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Effective Field Theory

What about a scalar field?

O(i)
L =|0®]* — m3|®|* — A\|®|* + Z Yitn  eq. wass scale of
i

An new Particles
~—Y  ithat couple to d

A2 wass-squared of 3 scalar
However... 5|m§| ~ O (4_) x logs £ield quadraﬁcaug sensitive
aw
+0 UV wm3ass scales!

either o <1
im3%| < A? requires ( or UV value of nkﬁ, finely adjusted

or symmetry that forbids corrections to m3

an EFT with 3 light scalar field is 3 special (and exci-&.ing!) Situation
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The Weak Scale

the standard Mode| appears to be an EFT with 3 light scalar field. !

,U2

2
(|H[*) = l—T;THl = v? ~ (174 GeV)? e I el
Pl

Nothing above the weak scale interacts with the Standard Model
b, |

Options:
» UV parameters highly fine-tuned

“ The Standard Model breaks down at scales ~ 47v ~ few x TeV,
and UV-completion introduces additional symmetry

star-[;ihg assumption of vast majnﬁ-l,-,j of the work own
the dynawics behind the wRak Scale in the last 4o+ years
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The Swampland Program

The rules of EFT might need to be extended in a gravitational theory

® Basic idea: Not all EFTs remain consistent when coupk&d to gravity
Vafa 2005

ntuition from string theory + black hole thought experiments

e Goal: Identify conditions for

landscape ‘membership’ Swaspland
¢ Hope: Powerful discriminator as Lanaseage ]

applied to EFTs in the far infrared

Page 12/48
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The Swampland Program

® No global symmetries Zeldovich, 1976

¢ ‘Completeness hypothesis’ Polchinski, 2004

e Charge quantization Banks, Seiberg, 2010

e Weak Gravity Conje*cture Arkani-Hamed, Motl, Nicolis, Vafa, 2006
Ete...

Most Swampland conditions remain conjectural, with few exceptions

Harlow, Ooguri, 2018
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The Swampland Program

® No global symmetries Zeldovich, 1976

¢ ‘Completeness hypothesis’ Polchinski, 2004

e Charge quantization Banks, Seiberg, 2010

e Weak Gravity Conjecture Arkani-Hamed, Motl, Nicolis, Vafa, 2006
...

Most Swampland conditions remain conjectural, with few exceptions

Harlow, Ooguri, 2018

Can the Swampland Program inform our quest Beyond-the-Standard-Model?j
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The Weak Gravity Conjecture

Arkani-Hamed, Motl, Nicolis, Vafa, 2006

In any EFT that descends from a theory of quantum gravity,
gravity must be the weakest force

e.g. in a theory with gravity + electromagnetism: F... < Fgum

2

[

m
GN 3 5 m 5 — QMPE
r

1l
J

-
vVGN
bound disappears when we turn off gravity, e Gy —» 0

Motivation from black hole thought experiments
+ absence of counterexamples in string theory
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EFT in the Swampland

In practice: QED + massive fermion + gravity

A~ Mp

S E

1072 + N

10~ §

1= =4 1
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EFT in the Swampland

In practice: QED + massive fermion + gravity

Weak Gravity Conjecture = region m = gMp; belongs in the Swampland

bk
f} A~ Mp
T
O Swawmpland considerations can impose
10-2 3 - ‘F‘Q\? Significant extva restrictions wot
c.;‘}'% g 4 dccessible within the EFT alone
10~ §
: : — g
1 10~ 1
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

The Weak Gravity Conjecture can be behind the large
ratio between the weak scale and the Planck scale

_.-'—’ o LY
e
/’ ! e H .
f ¢ | \
@ ; v
g
\ v
M\_I" L §
m S gMpy ¥ & "
M\_’g
W

Requirements: new (very weak) extra force + new charged state that gets
some of its mass from electroweak symmetry breaking (i.e. the Higgs vev)
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

Tov model:

LD —yPyYry + h.c. = L D —man)

(12%) = v? #0 m =gy

E

m S gMp e

3
AN
< e
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

Tov model:

LD —ydyYry +h.c. = LD —man)

(|¢,|2} o U2 # 0 m = yu

E

m S gMp =

$
AN
SRS

® Need g <107 '° for the weak scale
addresses the hievarchy problem by violating the expectations of EFT

® Attempts to implement this idea with the symmetries and field
content of the Standard Model fail Cheung, Remmen, 2014
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

New interactions with the Higgs = experimental signatures at colliders

Higgs invisible BR

e -1
h — 1) 14

2

A T
g,

A 19—

1§ e

10°1

o

4

10
m / GeV

102

103

‘—-
: \ PreciSion EW

constraints
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

New interactions with the Higgs = experimental signatures at colliders
I

<
‘ ' b Precision EW
Higgs invisible BR , | constraints

h — ) 107" ‘e N i

> |

AT . /;\Q |

mry, o |

it the wac 18 |

behind the weak 107° |

Scdle, there are |

experimental  107* |
Sighatures we can 10~1 1 10 102 103

look for m [/ GeV
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

Tov model:

LD —yPyYry + h.c. = LD —man)

(|¢,|2} o U2 # 0 h m = yu

E

m S gMpy =

3
AN
< @

® Need g <107'° for the weak scale
addresses the hievarchy problem by violating the expectations of EFT

® Attempts to implement this idea with the symmetries and field
content of the Standard Model fail Cheung, Remmen, 2014
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The Weak Scale from Weak Gravity

JHEP 1909 (2019) 081

IGG in collaboration with N Craig, and S Koren

New interactions with the Higgs = experimental signatures at colliders

1

Higgs nvisible BR
h — Yy

o ﬁ
yv -2

my,
it the w&c is
behind the weak 107°
Scale, there 3re
experimental  107*
Sighdtures we can

look for

m / GeV

F

102

‘—-
f \ Precision EW

constraints

*However¥*... re3|

tell-tale sign that

the wa&c is at play:
w&c particle
Chﬂt’ged under

extremely weak
103 qauge force

Pirsa: 21030019

Page 24/48



o

Explore
connections
between puzzles
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Dark Matter & Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

A WGC explanation of the weak scale comes with a stabilizing symmetry:
lightest particle charged under the new U(1) is stable = dark matter

S

® The dark matter is charged under a very weak, long-range force

e It behaves like a plasma: collective effects dominate over 2 — 2
scattering, and can be important at large scales

Ackerman, Buckley, Carroll, Kamionkowski, 2008
Mardon, 2016
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Dark Matter & Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

® For us, timescale for instabilities is set by the plasma frequency:

/_‘ m E gMPI
L 4
g*p o /P

m? ~ Mpp

Wp =

&'k 1/3
Wil < 10% (0.04 GeV cm )

p

cf. timescale for cluster collision 7 ~ 1 Gyr ~ 10'¢ s

complementary Sighatures that we can look for!
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Dark Matter & the Weak Scale

Dark matter candidates are a common occurrence in theories
of the weak scale with additional symmetries and field content

™ - SM e.g. WIMPs with relic abundance set by freeze-out

\“_t/f.- _ “\/
( \ Zeldovich, 1965
l . Zeldovich, Okun, Pikelner, 1965

'.\\n.q-- -_..-./.-\
7 NY |
Lee, Weinberg, 1977
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Dark Matter & Weak Gravity

JHEP 1909 (2019) 081
IGG in collaboration with N Craig, and S Koren

e For us, timescale for instabilities is set by the plasma frequency:

[ m S gMp,

. L 4
g’p o VP
m2 ™~ Mp

Wp =

_a\ 1/3
Wil < 10% (0.04 GeV cm )

P

cf. timescale for cluster collision 7 ~ 1 Gyr ~ 10'¢ s

complementary Sighatures that we can look for!
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Dark Matter & the Weak Scale

Dark matter candidates are a common occurrence in theories
of the weak scale with additional symmetries and field content

e.g. WIMPs with relic abundance set by freeze-out

DM P SM
\,' B |
( \'I Zeldovich, 1965
I'.'l 'Illl
P Zeldovich, Okun, Pikelner, 1965
m” SM

Lee, Weinberg, 1977

e.g. models of dark matter in theories of “Neutral Naturalness”,
including Asymmetric Dark Matter

Phys.Rev.Lett. 115 (2015) no.12, 121801
IGG in collaboration with R Lasenby, and J March-Russell

Phys.Rev.D 92 (2015) no.5, 055034
IGG in collaboration with R Lasenby, and J March-Russell
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Find all
ways to test
our ideas
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The QCD vacuum angle

Standard Model gauge group is SU(3) x SU(2) x U(1)
e~
73 (SU(3)) =Z

= an additional angular parameter — the QCD vacuum angle § —
is necessary to specify the vacuum of the theory

in Principle, could take any value between 0 and 21

[5 is a physical measurement of P and CP violation in the strong sector ]

Physical quantities depend on ¢, e.g. the EDM of the neutron:

d, ~107% f e-cm h

Experimentally: d,| <1.8-107% - cm = <1010
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The strong CP problem

6=0,+9,

0.5 . = 1—1/ ¥v 0, = argdet M,

o GG

£

A complex M, is a requirement for there to be CP violation in the
electroweak sector, which we have measured to be dcxnm = O(1)

= expect § = (O(1), in gross violation of experimental bound

n fact both C? *and* P are maxima'.'.\j violated b\j the wedk interactions
Ak
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The strong CP problem

6=0,+9,

0.5 . = 1—// L 0, = argdet M,

47 GG

;i

A complex M, is a requirement for there to be CP violation in the
electroweak sector, which we have measured to be dcxnm = O(1)

= expect § = (O(1), in gross violation of experimental bound

n fact both C? *and* P are maximal,l.\j violated b\j the wedk interactions

Strong CP problem: It is not possible to understand the smallness
of 6 based on the underlying symmetries of the Standard Model

nstead 2 dynamical wmechanisw or Sowe additional
sxjmmetr\j Structure 1§ r\ecessﬂrj +0 exPldin whxj 9_ 1S so -E,Iw.)ul
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The QCD axion

# promoted to dynamical field, the axion, which a pseudo-Nambu-
Goldstone boson of a spontaneously broken U(1)po global symmetry,
which must also be broken explicitly by QCD

i Peccei, Quinn, 1977
/ axion A Wilczek, 1978

{1’3 C!- — F (1 a7
Y g i lele. Vie) Weinberg, 1978
ar fpq
U(1)pq breaking scale w— \ /\ /\/
)
t + + + |
0% -m 0 T 2w fro

QCD dynamics generate a potential for a

In turn, the axion gets a non-zero vacuum expectation value s.t. § =
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The QCD axion

@ promoted to dynamical field, the axion, which a pseudo-Nambu-
Goldstone boson of a spontaneously broken U(1)po global symmetry,
which must also be broken explicitly by QCD

Peccei, Quinn, 1977

/ axion Wilczek, 1978
8 a = "(a '
r- % ele V(a) . Weinberg, 1978
am frq
U(()5q breaking scale w— \/\/\/
L
I b + L |
—or -m 0 T 2 feq

QCD dynamics generate a potential for a

In turn, the axion gets a non-zero vacuum expectation value s.t. § =

huge experimentdl effort to probe the axion ?aradigm
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The axion “quality problem”

To solve strong CB the QCD contribution to the axion potential
must dominate to 1 part in 10'° over any other contribution

¥ Howevey-.- ¥

Quantum gravity violates global symmetries

The violation of the U(1) pg global symmetry by gravity generates a
potential for the axion, deviating the theory away from a vanishing
10'2 GeV ) 4
frq

®|'®
Mp

LD e = le| < 10755 (

axion solution in tension with “no global sjmmetries” h quantuw gravity

wotivates considering alternative solutions to the Strong cP problem
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Parity solutions to strong CP

Non-zero 6 breaks both P and CP 52 H

T

Su(3) x Su(z)Lx Su(z}ﬂx u(1)

solution to the strong CP problem fr‘rd SAY “'HV"I/L
¢ . G"

Babu, Mohapatra, 1990 L G & L
Barr, Chang, Senjanovic, 1991 e W ® @

= restoring either can provide a

“Generalized” parity = ordinary parity + interchange
of fields in the Standard Model and mirror sectors

Crucially, § remains odd under generalized parity
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Parity solutions to strong CP

Non-zero 6 breaks both P and CP i H

.

Su(3) x Su(l)Lx Su(z}ﬂx u(l)

solution to the strong CP problem frﬁ SAY ‘_LH%
: G"

Babu, Mohapatra, 1990 s G & e :
Barr, Chang, Senjanovic, 1991 ¢ w ® a

= restoring either can provide a

“Generalized” parity = ordinary parity + interchange
of fields in the Standard Model and mirror sectors

Crucially, § remains odd under generalized parity

[

Parity wust be spontaneously broken so that wivror” particles are heavy
x

2
To solve strong CP: A~ ' ~ % | = v’ <107 GeV
v
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P nOt PQ -Print: 2012.13416

IGG in collaboration with N Craig, G Koszegi, and A McCune

Parity breaking scale may be as low as ~ 18 TeV

if Standard Model fermions masses are realized 4
through the “see-saw” mechanism UF.D.C.8 B
WE = @ =
!
Leading constraint from direct production of v L B
exotic gauge bosons at LHC ""'_TV, 7
. 1

w' e mw: ~ % 2 6 TeV s } SM
v

= o' >18 TeV

colliders are *central* +to probe ?ari-l;\j solutions to S-bv'ohg c?
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Domain Walls
e-Print: 2012.13416

IGG in collaboration with N Craig, G Koszegi, and A McCune

Spontaneous breaking of parity: ¢ <i> —@

V(¢)
V 5 ho (8% —v2)% + ueé (IHI? — |H'P?)
(¢) = +v’ v’ < v ; % ¢
—v v
Spontaneously broken discrete symmetry :
= domain wall solutions o S [l

-' e

toyologically stable

(i§ global) f/ o
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Domain Walls

e-Print: 2012.13416
IGG in collaboration with N Craig, G Koszegi, and A McCune

Domain wall problem: domain walls formed after inflation eventually

dominate the Universe’s energy density, in contradiction with observation

Zeldovich, Kobzarev, Okun, 1974

¥ Howevey--- ¥

Quantum gravity violates global symmetries
V(o)

A

\_-—/..@
'U'r

The brexking of parity due to gravitational
effects will break the vacuum degeneracy,
making the domain walls unstable

¢° v’ _‘,
= oV ~ e—— v

VDOe
MP.{ Mpg

emitiing gravitational vadiation

network of dowain walls collapses,
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Gravitational Waves

e-Print: 2012.13416
IGG in collaboration with N Craig, G Koszegi, and A McCune

Two main quantities characterize the resulting gravitational wave signal:

e Peak frequency: R~H'n~t,
® Strength: Paw ™~ G no?
3
Time of collapse: . LA F Vilenkin, 1981

d — )
oV e v'?

The smaller €, the later the collapse takes place

= lower frequency, stronger signal (less redshift)
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Gravitational Waves

e-Print: 2012.13416
IGG in collaboration with N Craig, G Koszegi, and A McCune

102 LEPTA

1010

Qwh?(f2)

10 15.

10 20 f* fl Hz
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Gravity breaks P

e-Print: 2021.13416
IGG in collaboration with N Craig, G Koszegi, and A McCune

Gravity can break P without spoiling the solution to strong CP

£ 21 (@) (H'Q)(HQ,) + (ea)ss (HAQ)) (H'Q;)] + e
Pl

— 5 v 4 7
I~10°- = o520 Te:'(m_m)

Just consistent with lower bound from colliders v" 2 18 TeV

P solution to strong CP + gravity violates all global symmetries

= neutron EDM could be observed in upcoming experiments
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Gravity breaks P

e-Print: 2021.13416
IGG in collaboration with N Craig, G Koszegi, and A McCune

Gravity can break P without spoiling the solution to strong CP

£ ML ()i (H'Q:) (HQj) + (ad)fj(H}TQ;){HTQj)} +he.
Fl

Uf

7] 5
6 ~ 10 2Mp)

, 0
= v S 20 TeV (10_10)

Just consistent with lower bound from colliders v’ 2 18 TeV

P solution to strong CP + gravity violates all global symmetries
= neutron EDM could be observed in upcoming experiments

3 fedtuve:--- not 3 bug!
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Conclusions

A variety of problems in the Standard Model remain unsolved

Formal developments can provide us with a new perspective,
in ways that can be experimentally pursued

Enormous diversity of experiments —- from colliders to dark
matter detectors to gravitational wave observatories

Combination of theoretical and experimental developments
will provide us with the breakthrough we need

* it is 3n exciting time to be working n Particle Physics*
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Thank you!




