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Abstract: In this work, we introduce and study "hybrid" fracton orders, especially though a family of exactly solvable models. The hybrid fracton
orders exhibit both the phenomenology of a conventional 3d topological ordered phase and a fracton phase. There are simple yet non-trivial fusion
and braiding between the excitations between the two kinds.& nbsp;One example is the hybrid order of the Z2 topological order with the Z2 Xcube
order, in which the fracton excitations fuse into the toric code charge, and in turn, the flux loop of the toric code can fuse into various lineon
excitations. In the same way there is a hybrid ordered phase of Haah's code and the 3d toric code. Proliferating certain gapped excitations in these
hybrid orders can drive a phase transition into either a fracton order or a conventional 3d topological phase.& nbsp;

Reference. ArXiv 2102.09555

Pirsa: 21030017 Page 1/32



Pirsa: 21030017

defense Untitled

Hybrid Fracton Phases

Wenjie Ji
UC Santa Barbara

Nathanan Tantivasadakarn ( Harvard University )
Sagar Vijay ( UC Santa Barbara )

arXiv: 2102.09555

March 2, 2021 @ Perimeter Institute

21PI_draft

Page 2/32



defense Untitled 21PI_draft

Plan

Introduction : Topological ordered phases and their exotic cousins - fracton orders .
Any model that exhibits the phenomenology of the two?

« The hybrid model of z, toric code and Z, model

Symmetry fractionalization and general construction

A parent order of the Z, topological order and the Z, fracton order
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Topological ordered phases 3
Rich in many ways ... B

fractionalized excitations

Degenerate ground states <

Excitations detect each other remotely ’& :/‘ ¢

Stable againt any local perturbations oy |
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Topological ordered phases | E

Exotic in many ways ...
Excitations are fractionalized
Excitations detect each other remotely
Degenerate ground states

Stable againt any local perturbations

Lattice models : 3d z, topological order ) m

4

H'!'Uric code = Z - Z

P i
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Topological ordered phases

Exotic in many ways ... More fundamentally,

Excitations are fractionalized
Long range entangled

Excitations detect each other remotely
topological entanglement entropy Sy, =-2logD
N

Degenerate ground states

Stable againt any local perturbations

Lattice models : 3d z, topological order ) m

4

H'!'Uric code = Z - Z

P i

[ Kitaev-Preskill, Levin-Wen, '05 |
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A new topological order: fracton phases

Similarly in several ways: degenerate ground states, topological

Yet exotic
Excitations with restricted mobilities

log ( ground state degeneracy ) ~ L

Example. Haah's code [ Haah-Preskill, '11 | Immobile excitations

H=-YA,-YB, ?
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An exotic topological order: fracton phases E

Similarly in several ways: degenerate ground states, topological

Yet exotic
Excitations with restricted mobilities
log ( ground state degeneracy ) ~ L

Example. Zz, X-cube model [Vigay-Fu, '16]

on a 3D cubic lattice, one qubit on each plaquette o
Excitation that can move

) . four excitations, each immobile . }
H= ~[g‘,41, - ), (B:+B)+B) only along one direction
v ‘

@
y

log,GSD ~ 2(L,+ L, + L) -3

A, = HX’ B: = H Z,

P=Popl SO
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Are they the same? 9

A real-space RG
Short range entangled

Usual topological order

local unitary
IS quantum circuites

Long range entangled

Fracton orders

| Shirley-Slage-Xie, '18 |
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How are they related ?

e Phases relate two orders ?

Strongly coupled stacks of lower-dimensional topological phases

— either fracton orders or 3D topological orders [ Vijay '17, Prem-Huang-Song-Hermele '19 , ... |
* Two orders coexist ?

lattice models with excitations that are immobile, non-Abelian as well as mobile excitations.

N | Bulmash, Barkeshli, Prem, Williamson,
Stephen, Rubio, Dua, Aasen, Slage, ... '19-'20 |
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How are they related ? )

e Phases relate two orders ?

Strongly coupled stacks of lower-dimensional topological phases
— either fracton orders or 3D topological orders [ Ma Xie |

e Two orders coexist ?

lattice models with excitations that are immobile, non-Abelian as well as mobile excitations.

| Bulmash, Hemele, ... |

* More straightforword relations?

We find moggts that I«tjbrici. two orders, coexist, and not separ&bia.
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A hybrid order ¥ B

Excitations reminecent of both orders

@ @
Not Separab]e fracton x fracton = mobile charge loop x loop = lineons at corners
@
® @
— J—
®
@
m L \
Remotely mutually detectable 2
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Fractonic Hybrid X-cube model

Hoo = Hroric code + Hx—cupe

HTU.-'H(' code — Z Aw - E Bp
v P
H‘(—cuba — ZAHXC - Z Z Bc,r

¢ A=-1 B,=-1
AXC=—1 B,=-1
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Fractonic Hybrid X-cube model | %

— ! '
Hh}'brr'd — M Toric code gt HX —cube

H! Z(A +AS )—Z P B, = V

Toric code

4
== T AT Y ! o - . -
X—cube — — A" — ( +Bc,r) AYC = A B, =
v ¢ rExyz e 4

X, —» €& =X, [[ CNOT.,, ( . [,} ~

pEnie} £ _
Zy — ¢, = 2! ,hf,sfd Sty

1000

o 10 0100

S = (” ;) CNOT = (” e ]) ¢, = = '
0010
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Fractonic Hybrid X-cube model

— ! ’
Hh_\,‘brﬁd — " Toric code 5 HX —cube

H;"ouc code E (A +A )_ Z
}’(—cube = ZAE'(C - 2 z ( T BC_J)

v c =XV
X.—> & =X, [ CNOT.,, o
pEnie} h £ = //
C _/ gle,llsr,;.\s.d)-
1000

o 10 0100
S = (” !.) , CNOT= |0 0 01 ¢, = _ '
0010
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Fractonic Hybrid X-cube model

_ ' t
Hk_vbrid =H Toric code +H,

—cube

!

. A=
Toric code — Z (AL” * AV') - 2 BP

L p
APEED WE ¥ W BT AR
v c

> IEX,Y.2

Generating algebra

hybrid two lattice gauge fields

< Z(f'-' 5(.” é“p’ XP >

2. ;| . ey B2 o x_’
5{:‘ o) {\ X or X 5‘(,1 = Z
3

ity P - A
5{'46' = l{,l’:,(, X}pr 5PX[J

for some neighboring (e,p) f.gé'p == f(:pﬁff-
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Fusion rules

9
Mobilities of excitations inherite from the toric code and X-cube models.
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Fusion rules : A ry

Mobilities of excitations inherite from the toric code and X-cube models.

v L '
carnersaf-n {{bap) m‘: {lineon)
Bt\=B(',_\'=f B{IZB(\:_I

m><m:m2
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Braiding ry
= i
The statistical phase between ¢“ and m” : ) =d
N
Example. a e - & fracton dipole braids with a lineon a e — ¢ fracton dipole braids with a corner of a m loop

& (fracton)

e [fracton) I

e (fracton)

B R o - - - - 9:_]

m? (lineon)
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Topological ordered e -

/ # | ,,,//

,// ; | /

Groud state subspace = X-gube subsector x Toric code subsector

Example. [Hg’c. = HA._. -1

plC
log, Ground state degeneracy = 2(L +L,+L,)

Stable against any local perturbations? Yes.
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Why this map will intertwine the two orders? " /

<Z, X, Z, X,>

¥

€7, & Q’P, Xp >

&= (i‘ or :i C‘Sz M

é:ezc' = Zeéc’ XP{:P = L:P‘XP

ot

for some neighboring (e,p) ffeélp == ié‘pge
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Where does the map come ? * B < 3

7, paramagnet

qubit qubit #F =25, &':XE«.}CNOTM

7

L ® ¢ L
qudit

& @ L ® L

® ® & ® L

& [ ] L ® ®
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Where does the map come ?

Z, paramagnet Hybrid model

qubit qubit

v

21PI_draft

* ° qudit . = [ I | |
LIN ® ®
& [ ] L ® ® . J . [ .

Step 1: Dualize one set of qubits to qubits on plaquettes
Step 2: Dualize the other set of qubits to qubits on edges
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Fractionalized symmetry on fracton orders

Z; paramagnet Step 1: 7z, paramagnetic + X-cube model
qubit qubit
@
\f @ L @ @
[ ] o ® @
qudit
o @ [ ] o
L & @ o L
@ @ L] L ]
o [ ] [ & L
) » @ ] ° N Z, global symmetry

fractionalized on the X-cube model
Z, global symmetry

. p € HXZ,,Z,)
Z, planar symmetries
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Fractionalized symmetry on fracton orders 1o
Step 1: Z, enriched X-cube model Step 2: Hybrid model of 7, toric code + X-cube model
N
| | | | |
] [ [ @ @ @ 2] @

gauge / dualize
the fractionalized
Z, global symmetry

Z, global symmetry

fractionalized on the X-cube model

pE HE(ZQ._ Z,)
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How general ? ' 9

G paramagnet Hybrid model
G/N qudit N (11§1it

V4

* .{ludil. = [.I.l.l’l
A D D

G global symmetry
N planar symmetries
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Lineonic hybrid model

G paramagnet Hybrid model
G/N qudit N qudit

\/

® @

qudit | I I I
@ @ o o

L ® L J @ L]
® @ @ @

® o o @ L]
@ o ® ®
W . . . | o | o | o

@ charge mobile along one direction ( lineon)

G global symmetry
N plilllill‘ symmctrics lineon x lineon = mobile charge

loort}x loop = fractons at corners

® charged under 2 out 3 planar symmetries
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Hybrid Haah's model ¥ -

g / ,/ i =
Hh_\‘brid — Y Toric code +H —cube 1 B,= V

Hy oo = — Z A +AH - Z B,
Vv 14

& g =

! — HC HC HC _ | He . Pl

HHaah'.s‘ code — — 2 fA(.‘ - 2 ch Al l/, ” B = 5 i 5
- J

c

i

&
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Hybrid Haah's model

____________________________

& & & & & & & & & 8 P
TEEEEREEEERY
L BN N B BN BN BN BN BN N

* 90000009 -0-0---0

.
')

ér/:_________________________%;/; e 0 & 0800 0B

"0 0 00 0 " 00N

m loop x m loop = m? fractons
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Parent order of Z2 gauge theory & Z2 Xcube order )

fcz 2
X-Cube Trivial
Order (SRE)
Condense
Charge B
(%)
Fractonic
Hybrid 3d Toric Code
X-Cube Order
)} =
L (._ Ll
rm 2

Condense Lineon (m?)

M
>

H = thbrfd — L2 the — I

e j2
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Conclusion: A family of hybrid orders n

Excitations & Fusion Rules

Generating Set = {1,e,e”,m,m"}

2 .
e® = ¢ x e = mobile Z, charge

m = flux loop

1 . . =
m?xm?=e?xe’=1

Hybrid Toric Code Layers
a
e = planon m~ = planon

2
m ®% m = planons (m~} along loop

Fractonic Hybrid X-Cube
e = fracton m* = lineon

. 2
m x m = lincons (m~) at corners

Lineonic Hybrid X-Cube
e = lineon m” = fracton

m x m = fractons (mm~) at corners
Hybrid Haah’s Code

e = fracton WK m? = fracton

m * m = fractons (m~) along loop
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Further questions

* (Generalize to n(‘n—Abclian case

« All symmetry fractionalization ? H*(G, )

e Twisted hybrid fracton orders
* Topological quantum memory

« Unified description of liquid and non-liquid phases? Field theory descriptions ?

Thank you and keep staying well.
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