Title: Division algebraic symmetry breaking

Speakers: Cohl Furey, Mia Hughes

Collection: Octonions and the Standard Model

Date: March 15, 2021 - 12:00 PM

URL: http://pirsa.org/21030013

Abstract: Can the 32C-dimensional algebra R(x)C(x)H(x)O offer anything new for particle physics? Indeed it can. Here we identify a sequence of complex structures within R(x)C(x)H(x)O which sets in motion a cascade of breaking symmetries: $Spin(10) \rightarrow Pati-Salam \rightarrow Left-Right$ symmetric $\rightarrow Standard$ model + B-L (both pre- and post-Higgs-mechanism). These complex structures derive from the octonions, then from the quaternions, then from the complex numbers. Finally, we describe a left-right symmetric Higgs system which exhibits, we believe for the first time, an explicit demonstration of quaternionic triality.

Pirsa: 21030013 Page 1/67

Division algebraic symmetry breaking

N. Furey
In collaboration with M.J. Hughes
Humboldt-Universität zu Berlin

Pirsa: 21030013 Page 2/67

Based on

N.F. and M.J. Hughes,

One generation of standard model fermions as a single copy of RCHO, *in preparation*

N.F. and M.J. Hughes,

Division algebraic symmetry breaking *in preparation*

Recorded seminars

First: Rutgers University Mathematics, 29th October 2020

Recent: Perimeter Institute, pirsa.org/21020027/, 22nd February 2021

Pirsa: 21030013 Page 3/67

* 1973 Günaydin & Gürsey

$$g_2 \rightarrow su(3)_C$$

* 1999 Dixon

$$so(1,9) \oplus su(2) \rightarrow so(1,3) \oplus g_{sm}$$

* 2016-8 Dubois-Violette & Todorov

$$f_4 \rightarrow su(3) \oplus su(3) / so(9) \rightarrow g_{sm}$$

* 2019 Krasnov

$$so(9) \rightarrow g_{sm} / so(5) \rightarrow u(2)$$

* 2020 Boyle

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$

LR symmetric

* 2020 F & H

* 2021 Todorov

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$

LR symmetric

* 2021 Krasnov

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$
LR symmetric
 $so(10) \rightarrow so(6) \oplus so(4)$
Pati-Salam

Division algebraic symmetry breaking

Pirsa: 21030013 Page 4/67

Pirsa: 21030013 Page 6/67

Pirsa: 21030013 Page 7/67

Pirsa: 21030013 Page 8/67

Why isolate one imaginary unit? octonion

Pirsa: 21030013 Page 9/67

Octonion

Left multiplication

$$e_{j_{1}}(e_{j_{2}}(e_{j_{3}}(e_{j_{4}}(e_{j_{5}}(e_{j_{6}}))))) = \pm (e_{j_{7}})$$

$$\vdots$$

$$e_{j_{1}}(e_{j_{2}}) e_{j_{1}}(e_{j_{3}}) \dots e_{j_{5}}(e_{j_{6}})$$

$$(e_{j_{1}}) (e_{j_{2}}) \dots (e_{j_{6}})$$

$$1$$

Pirsa: 21030013 Page 10/67

Octonion

$$ightharpoonup$$
 Cl(0,6)

Right multiplication
$$(\cdot e_7) = 1/2 \left(e_1(e_3 \cdot) + e_2(e_6 \cdot) + e_4(e_5 \cdot) - (e_7 \cdot) \right)$$

$$=: (E_7 \cdot)$$

 $(\cdot e_{j_7})$

Quaternion

Left and Right multiplication

Pirsa: 21030013 Page 13/67

 $R \Rightarrow Cl(0,0)$

$$(\cdot e_7) = 1/2 (e_1(e_3 \cdot) + e_2(e_6 \cdot) + e_4(e_5 \cdot) - (e_7 \cdot))$$

=: $(E_7 \cdot)$

Pirsa: 21030013 Page 15/67

$R \otimes C \otimes H \otimes O$ $= \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

Pirsa: 21030013 Page 16/67

so(10) $so(6) \oplus so(4)$ $su(3) \oplus su(2) \oplus u(2) \oplus u(1)$ $su(3) \oplus su(2) \oplus u(1)$ Spin(10) Pati-Salam LR symmetric Standard Model

Pirsa: 21030013 Page 17/67

Pirsa: 21030013 Page 18/67

Pirsa: 21030013 Page 19/67

Pirsa: 21030013 Page 20/67

Pirsa: 21030013 Page 21/67

Spin(10)

$$s_{ij} \ e_i \hspace{0.5mm} (\hspace{0.5mm} e_j \hspace{0.5mm} \cdot \hspace{0.5mm}) \hspace{3mm} + \hspace{3mm} s_{mn} \hspace{0.5mm} \epsilon_m \hspace{0.5mm} \epsilon_n \hspace{0.5mm} \cdot \hspace{0.5mm} + \hspace{3mm} s_{ni} \hspace{0.5mm} i \hspace{0.5mm} \epsilon_n \hspace{0.5mm} e_i \hspace{0.5mm} \cdot \hspace{0.5mm}$$

n, m = 1, 2, 3 i, j = 1 ... 7

new way

more substructure

✓ 16_↑⊕16_↓

new way

Complex structure

Generalizes notion of multiplying by complex i.

Pirsa: 21030013 Page 24/67

Cascade of complex structures

Pirsa: 21030013

Spin(10)

Pirsa: 21030013 Page 26/67

Spin(10)

n = 1, 2, 3 i, j = 1 ... 6

Pati-Salam

$$n=1,2,3$$
 $i,j=1...6$

LR symmetric

$$n=1, 2, 3$$
 $i, j=1 ... 6$

$$\epsilon_3 \Psi_R \quad \Psi$$

Standard model + B-L

Standard model + B-L

$$u(3)$$
 $su(2)$ $u(1)$
 $r_{ij}^{""}e_i(e_j\cdot) + r_n P_L \varepsilon_n \cdot + u(1)_Y \cdot$

n = 1, 2, 3 i, j = 1 ... 6

iΨ

Unbroken + B-L

$$u(3)$$
 $u(1)$ $r_{ij}^{""}e_i(e_j \cdot) + u(1)_{EM}$

i, j = 1 ... 6

Pirsa: 21030013 Page 31/67

Pirsa: 21030013 Page 32/67

Summary

Pirsa: 21030013 Page 33/67

so(10) $so(6) \oplus so(4)$

 $su(3) \oplus su(2) \oplus su(2) \oplus u(1)$

 $su(3) \oplus su(2) \oplus u(1)$

Spin(10)

Pati-Salam

LR symmetric

Standard Model

* 1973 Günaydin & Gürsey

$$g_2 \rightarrow su(3)_C$$

* 1999 Dixon

$$so(1,9) \oplus su(2) \rightarrow so(1,3) \oplus g_{sm}$$

* 2016-8 Dubois-Violette & Todorov

$$f_4 \rightarrow su(3) \oplus su(3) / so(9) \rightarrow g_{sm}$$

* 2019 Krasnov

$$so(9) \rightarrow g_{sm} / so(5) \rightarrow u(2)$$

* 2020 Boyle

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$

LR symmetric

* 2020 F & H

* 2021 Todorov

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$

LR symmetric

* 2021 Krasnov

$$so(10) \rightarrow u(3) \oplus su(2) \oplus su(2)$$
LR symmetric
 $so(10) \rightarrow so(6) \oplus so(4)$
Pati-Salam

Division algebraic symmetry breaking

$$so(10)$$
 \rightarrow $so(6) \oplus so(4)$ \rightarrow $u(3) \oplus su(2) \oplus su(2)$
Pati-Salam LR symmetric

$$\rightarrow g_{sm} \oplus u(1) \rightarrow u(3) \oplus u(1)$$

$$SM + B-L \qquad Unbroken + B-L$$

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗C Pati-Salam Model

The Higgs

I

Fun with the New $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}$ Model

Mia Hughes

March 15, 2021

mia.j.hughes@gmail.com

Pirsa: 21030013 Page 36/67

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ Pati-Salam Model

The Higgs

- 1 Triality Recap
- 2 The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model
- 3 The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Pati-Salam Model
- 4 The Higgs

4ロト4回り4日ト4日ト 豆 かくで

Non-degenerate Trilinear Forms

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

In general, the division-algebraic multiplication rule is:

$$e_a e_b = t_{abc} e_c$$

There is a natural inner product on each algebra:

$$\langle \psi^* \chi \rangle := \frac{1}{2} (\psi^* \chi + \chi^* \psi) = \psi_{\mathsf{a}} \chi_{\mathsf{a}}$$

So if we multiply two elements of a division algebra K:

$$v\psi = (v_a e_a)(\psi_b e_b) = v_a \psi_b t_{abc} e_c$$

and take the inner product with a third:

$$\frac{1}{2}(\chi^*(\mathbf{v}\psi) + (\mathbf{v}\psi)^*\chi) = \mathbf{v}_a\psi_b\chi_c\,t_{abc}$$

Non-degenerate Trilinear Forms

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

■ So each normed division algebra IK gives rise to a trilinear form, called a "normed triality":

$$t(\mathbf{v}, \psi, \chi) = \langle \chi^* \mathbf{v} \, \psi \rangle = \mathbf{v}_{\mathsf{a}} \psi_{\mathsf{b}} \chi_{\mathsf{c}} \, t_{\mathsf{abc}}$$

- Because of the division algebra property, this trilinear form is non-degenerate (and because of the normed property, the triality is "normed")
- Such trilinear forms are extremely rare: there's one for each normed division algebra, and that's it!

Triality Algebras

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

■ If we treat the 3 inputs to *t* as if they belong to different spaces, can we rotate each of them in such a way that preserves the trilinear form?

$$t(\mathbf{v},\psi,\chi) = t(O_{\mathbf{v}}\mathbf{v},O_{\psi}\psi,O_{\chi}\chi)$$
 $O_{\mathbf{v}},\ O_{\psi},\ O_{\chi}\in\mathsf{O}(\mathsf{dim}[\mathbb{K}])$

This gives the automorphism groups of the trialities, whose Lie algebras are:

$$egin{aligned} \operatorname{tri}(\mathbb{R}) &= \varnothing \ \operatorname{tri}(\mathbb{C}) &= \mathfrak{u}(1) \oplus \mathfrak{u}(1) \ \operatorname{tri}(\mathbb{H}) &= \mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(2) \ \operatorname{tri}(\mathbb{O}) &= \mathfrak{so}(8) \end{aligned}$$

イロト (日) (日) (日)

Triality Triples

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higg

Pirsa: 21030013

■ Each of the triality algebras consists of so(dim[K]) plus a possible extra part:

$$egin{aligned} \operatorname{tri}(\mathbb{R}) &= \mathfrak{so}(1) = \varnothing \ \operatorname{tri}(\mathbb{C}) &= \mathfrak{so}(2) \oplus \mathfrak{u}(1) \ \operatorname{tri}(\mathbb{H}) &= \mathfrak{so}(4) \oplus \mathfrak{su}(2) \ \operatorname{tri}(\mathbb{O}) &= \mathfrak{so}(8) \end{aligned}$$

■ The three inputs to the triality transform as the vector, spinor and conjugate spinor of $\mathfrak{so}(\dim[\mathbb{K}])$:

$$v \in V$$
, $\psi \in S_+$, $\chi \in S_-$,

And the structure constants are actually just the intertwiner ("Pauli matrices") between these three reps:

$$t_{abc} = (\sigma_a)_{bc}$$

Quaternionic Triality

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

Pirsa: 21030013

Triality is reflected in the symmetry of the famous Dynkin diagram for $\mathfrak{tri}(\mathbb{O}) = \mathfrak{so}(8)$, as well as its less famous cousin $\mathfrak{tri}(\mathbb{H}) = \mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(2)$

 \blacksquare In the $\mathbb H$ case, our trusty three reps transform as:

$$(2,2,1): \delta v = \theta_1 v - v \theta_2,$$

$$(2,1,2): \delta \psi = \theta_2 \psi + \psi \theta_3,$$

$$(1,2,2):$$
 $\delta\chi = \theta_1 \chi + \chi \theta_3, \quad \theta_i \in Im(\mathbb{H})$

イロトイラナイミトイミト き かくで

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Formulation of the SO(10) Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higg

There is a way to write nice-looking $\mathfrak{so}(10)$ transformations on an element of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$:

$$\delta\psi = \frac{1}{4}\theta^{ij}e_i(e_j\,\psi) + \frac{1}{4}\theta^{mn}\epsilon_m\epsilon_n\,\psi + \frac{1}{2}\theta^{mi}i\,\epsilon_me_i\,\psi$$
 with with $j=1,2,\cdots,7$ and $m=1,2,3$

So we have decomposed $\mathfrak{so}(10)$ as follows:

$$\mathfrak{so}(10)\cong\mathfrak{so}(7)\oplus\mathfrak{so}(3)+\mathsf{Im}(\mathbb{O})\otimes\mathsf{Im}(\mathbb{H})$$

• Under this action ψ transforms as 2 copies of the **16** of $\mathfrak{so}(10)$

Page 18 of 29

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Formulation of the SO(10) Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

There is a way to write nice-looking $\mathfrak{so}(10)$ transformations on an element of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$:

$$\delta\psi = \frac{1}{4}\theta^{ij}e_i(e_j\,\psi) + \frac{1}{4}\theta^{mn}\epsilon_m\epsilon_n\,\psi + \frac{1}{2}\theta^{mi}i\,\epsilon_me_i\,\psi$$
 with with $j=1,2,\cdots,7$ and $m=1,2,3$

So we have decomposed $\mathfrak{so}(10)$ as follows:

$$\mathfrak{so}(10)\cong\mathfrak{so}(7)\oplus\mathfrak{so}(3)+\mathsf{Im}(\mathbb{O})\otimes\mathsf{Im}(\mathbb{H})$$

• Under this action ψ transforms as 2 copies of the **16** of $\mathfrak{so}(10)$

Page 18 of 29

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Formulation of the SO(10) Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗¢ Pati-Salam Model

The Higgs

An element ψ of $\mathbb{A} := \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ has 32 complex components – just right for a (16; 2, 1) of $\mathfrak{so}(10) \oplus \mathfrak{sl}(2,\mathbb{C})!$

- In other words, an element of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ is perfectly suited to house one generation of SM fermions
- But how do you transform them correctly?

Page 17 of 29

Lorentz Symmetry

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

■ While the $\mathfrak{so}(10)$ acts via left-multiplication,

$$\delta\psi = \frac{1}{4}\theta^{IJ}\sigma_I(\bar{\sigma}_J\psi),$$

the $\mathfrak{sl}(2,\mathbb{C})$ acts by right-multiplication by elements of $\mathbb{C}\otimes \operatorname{Im}(\mathbb{H}^3)$:

$$\delta \psi = \psi \, \theta_{\mathcal{S}}, \qquad \theta_{\mathcal{S}} \in \mathbb{C} \otimes \mathsf{Im}(\mathbb{H})$$

- Of course this commutes with the $\mathfrak{so}(10)$, since left-and right-multiplication in \mathbb{H} commute!
- So we do indeed have exactly a (16; 2, 1) of $\mathfrak{so}(10) \oplus \mathfrak{sl}(2, \mathbb{C})$

Lagrangians

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

Seeing ψ as an $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ -valued field in 4-d Minkowski space, we can define a Dirac operator

$$\partial \psi := \partial_0 \psi - \partial_1 \psi \, i \epsilon_1 + \partial_2 \psi \, i \epsilon_2 - \partial_3 \psi \, i \epsilon_3$$

Then to write the free kinetic terms all we need is

$$\mathcal{L} = \langle i\psi^\dagger \partial \!\!\!/ \psi \rangle$$

- This is equivalent to the kinetic terms of 16 free 2-component complex Weyl spinors
- Taking gauge fields valued in $\mathfrak{so}(10)$ or any of its subalgebras, we can promote $\partial \to D$ and write appropriate gauge-invariant kinetic terms

Pirsa: 21030013 Page 48/67

The Pati-Salam Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Pati-Salam Model

The Higgs

The Pati-Salam model comes from breaking $\mathfrak{so}(10)$ into $\mathfrak{so}(6) \oplus \mathfrak{so}(4) \cong \mathfrak{su}(4)_C \oplus \mathfrak{su}(2)_L \oplus \mathfrak{su}(2)_R =: \mathfrak{g}_{PS}$

This breaks ψ into two irreducible pieces:

$$\psi = \psi_+ + \psi_-,$$

where

$$\psi_{+}\in (extsf{4}, extsf{2}, extsf{1}; extsf{2}, extsf{1}), \ \psi_{-}\in (ar{ extsf{4}}, extsf{1}, extsf{2}; extsf{2}, extsf{1}),$$

of $\mathfrak{su}(4) \oplus \mathfrak{su}(2)_L \oplus \mathfrak{su}(2)_R \oplus \mathfrak{sl}(2,\mathbb{C})$

 ψ_+ contains a generation of LH fermions and ψ_- contains the RH fermions

Something Smells like Triality

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Pati-Salam Model

The Higgs

Within $\mathfrak{sl}(2,\mathbb{C})$ there is $\mathfrak{su}(2)_{\text{spin}}$, the spatial rotation subgroup, so in fact we have a subalgebra $\mathfrak{tri}(\mathbb{H}) = \mathfrak{su}(2)_L \oplus \mathfrak{su}(2)_R \oplus \mathfrak{su}(2)_{\text{spin}} \subset \mathfrak{g}_{PS} \oplus \mathfrak{sl}(2,\mathbb{C})!$

■ Under this subgroup ψ_+ and ψ_- transform as

$$\delta\psi_{+} = \theta_{L}\psi_{+} + \psi_{+}\theta_{spin},$$

 $\delta\psi_{-} = \theta_{R}\psi_{+} + \psi_{+}\theta_{spin},$

So ψ_+ is just 4 lots of the $(\mathbf{2}, \mathbf{1}; \mathbf{2})$ and ψ_- is just 4 lots of the $(\mathbf{1}, \mathbf{2}; \mathbf{2})!$ What about the $(\mathbf{2}, \mathbf{2}; \mathbf{1})?!$

Pirsa: 21030013 Page 51/67

How the Higgs fits into the $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

How do we represent the electroweak-breaking SM Higgs in the $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ model?

- It begins with an "H", so it should obviously be in H...
- The SM Higgs h has 4 real d.o.f. and is a scalar w.r.t. $\mathfrak{su}(2)_{\text{spin}}$, so it really does make sense to make it a pure quaternion:

$$h \in \mathbb{H} \cong (1, 2, 2; 1) \text{ of } \mathfrak{g}_{PS} \oplus \mathfrak{su}(2)_{spin}$$

■ This decomposes into just the right rep for the SM Higgs under the decomposition of $\mathfrak{g}_{PS} \oplus \mathfrak{sl}(2,\mathbb{C})$ into the subalgebra $\mathfrak{g}_{SM} \oplus \mathfrak{sl}(2,\mathbb{C})!$

How the Higgs fits into the $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

How do we represent the electroweak-breaking SM Higgs in the $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ model?

- It begins with an "H", so it should obviously be in H...
- The SM Higgs h has 4 real d.o.f. and is a scalar w.r.t. $\mathfrak{su}(2)_{\text{spin}}$, so it really does make sense to make it a pure quaternion:

$$h \in \mathbb{H} \cong (1, 2, 2; 1) \text{ of } \mathfrak{g}_{PS} \oplus \mathfrak{su}(2)_{spin}$$

■ This decomposes into just the right rep for the SM Higgs under the decomposition of $\mathfrak{g}_{PS} \oplus \mathfrak{sl}(2,\mathbb{C})$ into the subalgebra $\mathfrak{g}_{SM} \oplus \mathfrak{sl}(2,\mathbb{C})!$

The Triality Scalar

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ SO(10) Model

The R⊗C⊗H⊗C Pati-Salam Model

The Higgs

At this point it's obvious how the quaternions' trilinear form fits into the picture... the Yukawa terms:

$$\overset{\mathtt{I}}{\mathcal{L}}_{\mathsf{Yukawa}} = \mathbf{k} \langle \widetilde{\psi_+} \, \mathbf{h} \, \psi_-
angle,$$

where the tilde denotes simultaneous ${\mathbb H}$ and ${\mathbb O}$ conjugation

Expanding out the octonionic part of the inner product splits this into the 4 colours:

$$\mathcal{L}_{Yukawa} = k \langle \widetilde{\psi_{+A}} \, h \, \psi_{-}{}^{A} \rangle,$$

with
$$A=0,1,2,3$$
 and $\psi_{+A},\,\psi_{-}{}^{A}\in\mathbb{C}\otimes\mathbb{H}$

The Triality Scalar

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recar

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

■ Further splitting ψ_{+A} and ψ_{-}^{A} into their \mathbb{C} -real and \mathbb{C} -imaginary parts gives 8 copies of the pure quaternionic triality scalar!

- Of course once g_{PS} is broken to g_{SM} these terms will end up with different coupling constants, leading to the different masses of the SM fermions
- But at the \mathfrak{g}_{PS} level it seems \mathbb{H} triality can tie in nicely with the Pati-Salam model

Further Work: Octonionic Triality

Fun with the New $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ Model

Mia Hughes

Triality Recap

The $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}$ SO(10) Model

The R⊗C⊗H⊗0 Pati-Salam Model

The Higgs

Of course it would be much more exciting to find 0 triality in the Standard Model

- Perhaps the g_{PS₁}→ g_{SM} Higgs could be written as a (complex) octonion?
- What does the division-algebraic multiplication rule actually do for the fermions?

Pirsa: 21030013 Page 57/67

Pirsa: 21030013 Page 58/67

Cl(0,8)

3 generations $+ 3 v_R$ Gauge bosons Higgs bosons

Counting

Pirsa: 21030013 Page 60/67

Cl(8)

$$[Pi\Lambda_j, PCl(8)] + c.c.$$

$$Cl(8) \mapsto \\ (4 \times \underline{\mathbf{8}}) \oplus (24 \times \underline{\mathbf{3}}) \oplus (18 \times \underline{\mathbf{1}}) \oplus \\ (4 \times \underline{\mathbf{1}}) \oplus (24 \times \underline{\mathbf{3}}^*) \oplus (18 \times \underline{\mathbf{1}}) \oplus \\ \mathbf{Z \ boson} \qquad \boxed{(4 \times \underline{\mathbf{1}})} \oplus \mathcal{C}_{36}$$

SU(3)_c decomposition

Cl(8)

 $[Pi\Lambda_j, PCl(8)] + c.c.$

$$\sum_{i=1}^{n} P_i a P_i b + P_i b (P_i a)^{\dagger}$$

Multi-action

Cl(8)

$$\sum_{i=1}^{n} P_i a P_i b + P_i b (P_i a)^{\dagger}$$

Cl(8)

Lie algebras Jordan algebras

Multi-action

Pirsa: 21030013 Page 63/67

$$\sum_{i=1}^{n} P_i a P_i b + P_i b (P_i a)^{\dagger}$$

$$E_3$$

$$\sum_{i=1}^{n'} P_i' a \ P_i' b + P_i' b \ (P_i' a)^{\dagger}$$

$$\mathbf{E}_{2}$$

$$\sum_{i=1}^{n''} P_i'' a P_i'' b + P_i'' b (P_i'' a)^{\dagger}$$

$$\mathbf{E}_1$$

Multi-action

$$\sum_{i=1}^{n} P_i a P_i b + P_i b (P_i a)^{\dagger}$$

 E_3

Coarse grain

$$\sum_{i=1}^{n'} P_i' a \ P_i' b + P_i' b \ (P_i' a)^{\dagger}$$

 \mathbf{E}_{2}

$$\sum_{i=1}^{n''} P_i'' a P_i'' b + P_i'' b (P_i'' a)^{\dagger}$$

 \mathbf{E}_1

Multi-action

N.F., Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra, <u>arXiv:1910.08395</u> [hep-th]

(Appendix)

Pirsa: 21030013 Page 66/67

$$\sum_{i=1}^{n} P_i a P_i b + P_i b (P_i a)^{\dagger}$$

 E_3

Coarse grain

$$\sum_{i=1}^{n'} P_i' a \ P_i' b + P_i' b \ (P_i' a)^{\dagger}$$

 E_2

$$\sum_{i=1}^{n''} P_i'' a P_i'' b + P_i'' b (P_i'' a)^{\dagger}$$

 \mathbf{E}_1

Multi-action