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Abstract: Statistical mechanics is the branch of physics that explains how macroscopic properties of matter emerge from the behavior of its
microscopic constituents. Population ecology studies how and why popul ations change over time and space, primarily due to the interaction among
individuals and between individuals and the environment where they thrive. Although seemingly very different, both disciplines aim to explain
large-scale phenomena based on a description of their underlying drivers, and statistical mechanics tools have been largely used to formalize
population ecology. For over 100 years, however, mathematical models in population ecology have relied on very strong and unrealistic
assumptions about the way individuals move and get to interact with each other and with the environment. Specifically, they assume that individuals
behave like the molecules of an ideal gas: following completely random trajectories through the entire area occupied by the population and only
interacting with each other when their tragjectories intersect.& nbsp;

In this presentation, | will first discuss why mathematical models are powerful tools to understand ecological processes. Then, | will show how
traditional models of population dynamics emerge from ideal gas assumptions for individual movement and briefly touch on our recent efforts to
refine those model s combining more elaborated tools from statistical physics, random walk theory, and GPS tracking data of natural populations.

& nbsp;
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How can statistical mechanics
help ecology?

and the other way around!!

Ricardo Martinez-Garcia
(ICTP - SAIFR/IFT - UNESP)

ricardom@ictp-saifr.org

Perimeter Institute, March 2021
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Physics and ecology?

Ecology developed from natural history

Stephen A. Forbes Frederic E. Clements
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Ecological pattern ——  dynamical process
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Ecological pattern
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Ecological pattern ———  dynamical process
(also in space)

....

(pattern images from Fig. 1 in Meron, 2019)
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Ecological pattern ——  dynamical process
(also in space)

(pattern images from Fig. 1 in Meron, 2019)
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Ecological pattern ——  dynamical process
(also in space)

RMG et al. PLOS Comp Biol (2018) Rossine, RMG et al. PLOS Biol (2020)
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Macroscopic patterns are
independent of microscopic details

/——-—-— Ecology \ (——-— Physics S
L/

&
15.— | | | | | I SﬂCCh‘i]‘Om}fceg 1 ‘\. /.
l(Ji— .. . .0 * s e e __ \ .\[ &J\\
o , s _[ \

5 N l

. | I ./

0 10 0 30 40 50 60

time (hours) .\ L
Paureliaalone | | P caudaum alone ‘__”.
300 B0
250 2 = 70 4
250 ™ ol
200 4 / e
150 40
100 4 ﬁ
50 j’ 10 4
0 4 0 T
5 20
"\ YYYYYYYYY // \\ I/

Pirsa: 21030007 Page 10/31



Pirsa: 21030007

Quantitative relations to predict patterns
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Population dynamics is an emergent phenomena

Macroscopic Microscopic
pattern processes

Birth, death &
competition

N@#t)=(B-0ON@-1N¢t) & 5 08
b 0
time " 7'

Logistic growth

~ Population size
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Well-mixed model: “law of mass action”

Assumptions: cells are ideal gas patrticles.

Ballistic or Reflected Brownian Motion within a "solid” container

z = g&(t)

Steady-state PDF individual position: UNIFORM

1 .
B —5 inside R
f(2,t — 00) = { 0 outside R

Hutchinson & Wasser 2007 Biological Reviews
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Q: How do complex microscopic features
translate to macroscopic dynamics? N

Vivian Dornelas

Well-mixed Interactions with complex environments
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Q: How do complex microscopic features
translate to macroscopic dynamics?

Well-mixed Range residency / territoriality

N(t) = (8- 0)N(t) — 7 N(?)

(video from @BoixRichter)

RMG et al. Journal of Theoretical Biology (2020)
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Let’s be physicists:

- N=2

» Harmonic oscillator

How do two individuals encounter with
each other if they are not well-mixed?

After that...more complex models and larger population sizes
STATISTICAL PHYSICS
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Encounter rates link movement with
population-level processes

PREDATION DISEASE TRANSMISSION
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Not so mixed: beyond the “law of mass action”

Assumptions: ‘animals are trapped in harmonic potentials’.

Ornstein-Uhlenbeck models, no need of boundaries.
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OU vs RBM

OU, due to trapping in the harmonic potential, features a spatial scale for
interactions at the individual level, p o /g7, that is much smaller than the
whole habitat occupied by the population.

How does the existence of such scale influence encounters?
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Encounters between two individuals

: Reflected
Ornstein-Uhlenbeck : .
Brownian motion
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Defining the encounter

Predator

Predator

Key for the calculation:
obtain the distribution for the distance between individuals
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The steady-state mean encounter rate

Ornstein—Uhlenbeck
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Assuming well-mixing biases A LOT encounter results
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Assuming well-mixing biases A LOT encounter results
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Distance between home range centers, Ry

4

Predator home range radius, py
Refined encounter rates could either be higher or lower relative to mass action.

Context dependence makes it very hard to know even in which direction the
predictions of well-mixed models will be wrong.
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Realistic movement also changes
WHERE encounters occur

Probability that two animals encounter at a location, (x, y):

fE(x:y) OCfl(x,y) fz(x:JJ)

y (meters)

-10
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/‘.—“"-—\
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X (meters)

Noonan, RMG et al., (2021). Methods in Ecology and Evolution.
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And we can learn a lot of ecology from it!

Video credits: Smithsonian Tropical Research Institute (Panama)

Data collection: Grace Davis, Meg Croofot
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And we can learn a lot of ecology from it!
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Noonan, RMG et al., (2021). Methods in Ecology and Evolution.
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Extensions: effect of landscape heterogeneity

i = Lz — A+ g &(t) —uVe(r, 1
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x coord. (Km)

Gabriel Andreguetto

Ronaldo Morato
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Extensions: other encounter metrics.

« When and where will two animals encounter for the first time?

* What is the probability that a predator encounters a prey within the next 3 days?

« What is the probability that a female and a male encounter each other within a
mating season?

First encounter statistics and survival analysis

y (meters)

-10

Benjamin Garcia -5 0 5 10 15

de Figueiredo X (meters)
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Extensions: long-range (but finite) interactions.

Zy, = —7_11) Zy — Ap: _VI/;zfvuzp — Zy|) + 9p Gp(t)
A —% :qu = Afu + Gu g’U(t)

How does this change the frequency and location of encounters?
Can we account for behavioral state of the animals?
What makes the pairwise interaction potential a realistic one?

Can we account for prey avoidance too?
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