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Abstract: "Non-equilibrium statistical mechanics has seen some impressive developments in the last three decades, thank to the pioneering works of
Evans, Cohen, Morris and Searles on the violation of the second law, soon followed by the ground-breaking formulation of the Fluctuation Theorem
by Gallavotti and Cohen for entropy fluctuation in the early nineties. Their work was by vast literature, both theoretical and experimental

The extension of these results to the quantum setting has turned out to be surprisingly challenging and it is still an undergoing effort.

Kurchan&€™s seminal work (2000) showed the measurement role has to be taken in account, leading to the introduction of the so called

two-time measurement statistics (also known as full counting statistics).

However in this context, the lack of atrajectory notion leads to both conceptual and technical problems, or phenomena with no classical counterpart,
as underlined by some of our recent results.

Inthistalk | will review some of the key concept involved in the Fluctuation Theorem and its extensions to the quantum setting;
I will present some recent results exploring the role played by ultraviolet regularity conditions (joint work with R.RaquA©pas and T.Benoist )."
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Context: statistical mechanics

Entropy

p function on the phase space M describing
particle distribution

= p is a measure on M given by p(x)dx

S(p) := In( number of particle configurations
corresponding to p / total configurations)
encodes how likely the distribution p is

Variational principle: the equilibrium distribution p is the most
likely one i.e. the one that maximize the entropy (between those
satisfying energy constraints).

Second law: "Nature evolve from less probable to most probable
= entropy of an isolated system tend to increase until it reaches
equilibrium"

According to this picture second law is only a statistical one,
suggesting that there should always be some nonzero probability
that the entropy of an isolated system might spontaneously
decrease. Fluctuation relation quantify this probability.
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Non-equilibrium and Fluctuation relation

. _ d(pdx
Entropy and Relative entropy S(p) = S(=5)
Relative entropy S(v|u), function of :;jl_z encodes increase of
entropy, defined when v absolutely continous with respect to

Fluctuation relation If IP’f’d(s) is the law of the random variable
corresponding to average entropy production rate et
P?(¢) = P;"(—¢). Under general hypothesis (example: p
Gibbs, TRI)
dry =
S (g) = et
de,d( )

equivalent to

o) = f(1-a) (@) = [ etapi(9)

Entropy and
energy fluctuations
il'l non-equilibrium
quantum statistical

mcChﬂl‘l Ics
Annalisa Panati,

CPT, Université
de Toulon

Fluctuation relations

Annalisa Panati

Page 4/17



Pirsa: 21020047

Context: quantum statistical mechanics

Fluctuation relations

Classical case: [Evans-Cohen-Morris '93] numerical experiences

[Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation

work in driven system [Bochkov-Kuzovlev '70s] [Jaryzinski '97]
[Crooks '99] etc

a new area of research was open
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Non-equilibrium and Fluctuation relation

. _ d(pdx
Entropy and Relative entropy S(p) = S(Tl)
Relative entropy S(v|u), function of «?l_z encodes increase of
entropy, defined when v absolutely continous with respect to

Fluctuation relation If IP’f’d(s) is the law of the random variable
corresponding to average entropy production rate et
P?(¢) = P;"(—¢). Under general hypothesis (example: p
Gibbs, TRI)
dry = :
— o to
——(p) =e
e

equivalent to

o) =ef(1-a)  ef(@) = [etari(9)
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Quantum case: Simplified setting, S is defined as an operator il ey
Attempt 1: "Naive quantization" S Jistisa Panatiigy
Underlying idea : (in the simplifed setting) define an observable Bl snicenhe

Y. = 1(S¢ — S) on H and consider the spectral measure py,

—attempted in work related litterature [Bochkov-Kuzovlev

' 705_ ' 805] ) Fluctuation relations

—attempted in the '90, called "naive quantization"

leads to NO-fluctuation relations!!!!

Attempt 2:

Physcal point of view [Kurchan'00] Measurement has been

neglected. Associate to S the two-time measurment statistics P3
defined as difference between two measurement

leads to fluctuation relations

Mathematical point of view family of functionals satisfing the

12

symmetry: the preferred one is the one where I is replaced by
Ay, [Araki 70s, Jaksic-Pillet since 00s-now]
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Quantum case: Simplified setting, S is defined as an operator i e
Attempt 1: "Naive quantization" e
Underlying idea : (in the simplifed setting) define an observable Sl st
Y. = 1(S¢ — S) on H and consider the spectral measure py,

—attempted in work related litterature [Bochkov-Kuzovlev

' 705_ ' 805] ) Fluctuation relations

—attempted in the '90, called "naive quantization"

Annalisa Panati

leads to NO-fluctuation relations!!l!

Attempt 2:

Physcal point of view [Kurchan'00] Measurement has been
neglected. Associate to S the two-time measurment statistics P
defined as difference between two measurement

leads to fluctuation relations :

Mathematical point of view family of functionals satisfing the

12

symmetry: the preferred one is the one where I is replaced by
Ay, [Araki 70s, Jaksic-Pillet since 00s-now]

At the level of averages and variances, there is no differencel
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Two-time measurment statistics

Confined systems: described by (H, H, p) dimH < oo
Given an observable A: A=73":3a;P,, where aj € o(A) P,
associated spectral projections

Procedure:

- t =0, we measure A (outcome a;)

- evolve for time t

- measure again at time t (outcome ay)

Two-time measurement distribution of A:

Pa.¢+(¢)= probability of measuring a change in A equal to ¢.
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-t=0, we n'1easure A (outcome a;) T
— EVOIVE for time t CP;I'E. !.IJ_::;::lte

- measure again at time ¢ (outcome ay)
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Pa.+(¢)= probability of measuring a change in A equal to ¢
In confined system: i e

measurment

IPA;t(qs) — Z tr(pPaj )tr(e_lthameltH Pak) statistics

ak—aj:cf)

Z tr(e‘“H P..pP,, eitH P..)

ak—aJ-:qb

1|
= ————P,.pP,..
Pam tr(pPaj) a; P

Fact/Problem: the mgasurment perturbes the state, the intial
state reduces to pam
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-t=0, we measure A (outcome aj) S—
= EVOIVQ for time t CP;I'E. !.IJ_::;::lte

- measure again at time ¢ (outcome ay)
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Pa.+(¢)= probability of measuring a change in A equal to ¢
In confined system: Tl

measurment

IPA;t(¢§ = Z tr(pPaj )tr(e_lthameltH Pak) statistics

ak—aj:cf)

Z tr(e‘“H P..pP,, eitH P..)

ak—aj=¢

I
= ———P,.pP,..
Pam tr(pPaj) a; P

Fact/Problem: the measurment perturbes the state, the intial

state reduces to p.m
Remark: supp(PPa ) is included on the set of possible A-differences
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Two-time measurment statistics

Conservation laws

Classical system:(M, H, p)
Two-time measurment statistics is equivalent to the law P 4,
associated to AA; ;= A; — A. 1

Assume A + B is conserved. The identity as classical observables
NAA; = At — A= —(B; — B) = —/AAB; yiels the identity

Paa, =P_as,

Quantum system A; — A = —(B; — B) as operators yields identity
between all spectral measures

pna, = p-agy but Par#P_p;

1Given a classical observable C and an intial state p, we call C-statistics the
probability measure P¢ such that [ f(s)dPc(s) = [ f(C)dp for all f € B(R)

Entropy and
energy fluctuations
il'l non-equilibrium
quantum statistical

mEChal’l‘lC!

Annalisa Panati,

CPT, Université

de Toulon

Conservation laws

Annalisa Panati

Page 12/17



Pirsa: 21020047

Two-time measurment statistics
Conservation laws-energy balance
Classical system (M, H, p)
H=Hy+V p is invariant for the dynamics associated to Hp
(Ho interpreted as heat)
Energy conservation:
AHoe = Hoe — Ho = —(V: — V) = (—V): — (—V) as function on
M
In particular if V is bounded by C then
sup; |AHo,¢| < 2C and supp(PaH,,.) bounded

Quantum system (H, H, p) H=Hy+V

Energy conservation: Hpy — Hy = -V + V =(—V), — (—V) as
operator on H vyields an identity between all spectral measures but

PHyt #P_v.¢

A priori one can have: supp(Py, ;) bounded but

E(¢*") = ]¢2ndﬂIHo,t(¢) = +00
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Perturbation V bounded quantum statistical
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Quantum impurity in a free Fermi gas
H=T.(C)®I,(L*(R,,de)) = C?>R,(L3(R,,de))

Ho =dlN(go) ® 1+ 1®dlr(é) go >0

H=Hy+ (a*(1) @ 1)(1® a(f)) + (a(1) @ 1)(1 ® a*(f))
f € [?(R,,de)

w is a (79, 8) KMS state

Theorem (Benoist, P., Raquépas 2017)

For the above model the following are equivalent:
1. sup,cg E.[¢?"+?] < o0;¢

Bounded perturbations

2. for a non-trivial time interval [t1, to] |, f E.[¢?"?]dt < oo;
3. (nD)

For this model (nD) is equivalent to R 3 s — €'*¢f € L?(R,,de)
is n times norm- differentiable i.e f € Dom(é")
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Heat fluctuations
Perturbation V bounded

Regularity condition optimality

Quantum impurity in a free Fermi gas
H="T.(C)®I,(L2(R,,de)) = C?>R,(L3(R,,de))

Ho =dlN(go) ® 1+ 1®dlr(é) go >0

H=Hy+ (a*(1) @ 1)(1® a(f)) + (a(1) @ 1)(1 ® a*(f))
f € [?(R,,de)

w is a (79, 8) KMS state

Theorem (Benoist, P., Raquépas 2017)

For the above model the following are equivalent:
1. sup,eg Ee[¢?"2?] < oo;

2. for a non-trivial time interval [t1, to] |, f E.[¢?"2]dt < oo;
3. (nD)

For this model (nD) is equivalent to R 3 s — €'*¢f € L?(R,,de)
is n times norm- differentiable i.e f € Dom(é")

Remark: decay of f controls how high energy frequencies
contribute to the interaction (ultraviolet regularity)
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Conclusions: underlying picture

Classical VS Quantum two-time measurement

Classical

trajectory picture
V0= AHy =0
supp(P;,_v) bounded

= Supp(Pt,Ho)
bounded no large fluctuations

exist when the interaction is
bounded

2nd law

flurtuation relations
"probability of negative entropy
production decays exponentially
in time"

Quantum TTM

jumps picture

V0% AHy; =0
ex:supp(P;,—v) and P, g,
heavy-tailed

energy transitions induced by
the interaction ,large

fluctuations may exists even if

the interaction is bounded

2nd law

fluctuation relations
picture unchanged
without UV conditions
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Conservation laws-energy balance

Classical system (M, H, p)

Annalisa Panati
Annalisa Panati,

H=Hy+V p is invariant for the dynamics associated to Hp CPT, Université
(Ho interpreted as heat)

Energy conservation:

AHoe = Hoe — Ho = —(V: — V) = (—V): — (—V) as function on
M

In particular if V is bounded by C then

sup; |AHo,¢| < 2C and supp(PaH,,.) bounded

de Toulon

Conservation laws

Quantum system (H, H, p) H=Hy+V

Energy conservation: Hpy — Hy = -V + V =(—V), — (—V) as
operator on H vyields an identity between all spectral measures but

e R

A priori one can have: supp(Py, ;) bounded but

E(¢*") = ]¢2ndﬂIHo,t(¢) = +00

We want to study the behaviour of Py ; tails
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