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Abstract: Information theory offers mathematically precise theory of communication and data storage that guided and fueled the information
age.&nbsp; Initially, quantum effects were thought to be an annoying source of noise, but we have since learned that they offer new capabilities and
vast opportunities. Quantum information theory seeks to identify, quantify, and ultimately harness these capabilities. A basic resource in this context
isanoisy quantum communication channel, and a central goal is to figure out its capacities---what can you do with it?& nbsp; [&E€™II highlight the
new and fundamentally quantum aspects that arise here, such as the role of entanglement, ways to quantify it, and bizarre new kinds of synergies
between resources.& nbsp; These ideas elucidate the nature of communication in a quantum context, as well as revealing new facets of quantum
theory itself.
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Nonadditivity of Quantum Capacity

Slightly different question. Say we know
Q(Ny) = lim —Q1(N®™)

n—-oo N
Q(N) = lim ~Q1(N2™)

n-oco n

What about Q(N; ® N,)?
Is there a better way to use N;and N, together?

Yes, when N; and N, are different enough, they're kind of like
different ingredients (different resources).

Then you get Q(N; ® N,) >> Q(Ny) + Q(N3)
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“The fundamental problem
of communication is that
of reproducing at one
point either exactly or
approximately a message
selected at another point.”

-Claude Shannon 1948

Source coding, channel coding, detection, cryptography...




Information theory

Sending, storing, processing data.
Using noisy resources to simulate noiseless resources

Alice Bob
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Fig. 1. — Schematic diagram of a general communication system.

a sad duk went to unavrsadee — 3 sad duck went to university
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Quantum Information Theory:
The Philosophy

Goal 1) Abstract away as much detail as possible to find out the
fundamental limits nature puts on information processing

Goal 2) The details that are left give us a clearer picture of quantum
mechanics itself. Can help understand traditional physics.

Goal 3) Strategies for approaching these fundamental limits may be
realizable. Either today or in the future.

It's about physics, but draws on other things too, like geometry,
computer science, engineering, etc.

It's certainly different from more traditional branches of physics.

J (1]

Maybe it's “toy physics”.

Quantumly: lots more resources, and more interesting interactions.
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Quantum Information Theory

I'FLOUR
S AR

What are the resources?
How can we convert them?

How do they interact?

What's the recipe?

%) A

[PoraB\ -

Teleportation
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Quantum Information Theory

'FLOUR
S A

What are the resources?
How can we convert them? e
How do they interact? -
What's the recipe? :

1) (H | A=

b #—[H
[PoraBN -

Teleportation
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 Information Theory Basics

« Quantum Capacity

« Additivity and nonadditivity

* Quantum boost for classical networks
* Quantifying quantum correlations




Sender Receiver

The capacity is the amount of stuff you
can send per use of the channel. For a
truck, measured in tons per load. For
classical channel it's bits per channel use.
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Channel Capacity

Sender

The capacity is the amount of stuff you
can send per use of the channel. For a
truck, measured in tons per load. For
classical channel it's bits per channel use.
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Channel Capacity

Encoder
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Decoder
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Given n uses of a channel, encode

amessagem < {1,....M}to a
codeword x" = (x,(m),..., X,(m))
m’~m

At the output of the channel, use
y" = (Yq,...,Y,,) to make a guess, m'.

The rate of the code is (1/n)log M.

The capacity of the channel, C(N),
is defined as the maximum rate
you can get with vanishing error

probability as n — oo
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p(y|x)
Capacity: bits per channel use in the limit of many channels

C(N) = m)?XI(X; Y)

H(X) = —Zleogpx
1(X;Y) = H(X)+H(Y)-H(XY) is the mutual informa;ion




Additivity lets us calculate answers |

Classical Capacity of Classical Channel
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Additivity tells us that resources
only interact trivially

Additive: trivial interaction Nonadditive:
nontrivial interaction

C(Ny X N3) = C(Ny)+ C(N;)

Q(N; ® N;) > Q(N1) + Q(N3)
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Channel Capacity

p(y|x)
Capacity: bits per ChanWhannels

. 1
. C(N) = llrI_l—,}:?o - cD (N>

where CD(N) = maxy I(X;Y). Luckily C™ is additive, so
C(N) = cO(N)
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Quantum Information theory:
Making information theory consistent with physics

Quantum effects as annoying noise

Noise at Optical Frequencies; Information Theory.

HEKOTOPBIE OIEHKH 1711 KOJIMYECTBA HH®OPMA LN,
J. P. GORDON IEPETABAEMOrO KBAHTOBBIM KAHAJIOM CBA3H

Bell Telephone Laboratories, Incorporated - Muwrray IHill, N. J.

1965 A. C. Xoaeso 1973

Quantum effects give new capabilities
- Weisner, Bennett-Brassard: QKD

- Quantum Communication: sending quantum information
over quantum links, quantum error correction, etc.
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Quantum Channel Capacities

Sender Receiver

The capacity is the amount of stuff you

can send per use of the channel. You want
to send qubits, then it's quantum capacity.
You want to send bits, it's classical
capacity.
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Quantum Channel Capacities

Sender Receiver

The capacity is the amount of stuff you

can send per use of the channel. You want
to send qubits, then it's quantum capacity.
You want to send bits, it's classical
capacity.
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Quantum Capacities

Classical channels have only one capacity (bits
per channel use), but Quantum channels have
several:

* Classical C (bits per channel use)
* Private P (private bits per channel use)
 Quantum QO (qubits per channel use)

As well as various assisted capacities:
entanglement assisted capacity or quantum
capacity assisted by classical feedback




Aside: Channels vs States

Channel State
> A
A — B
PAB
@ B
Quantum Capacity Distillable Entanglement

Private Capacity Distillable key

Basically, there’s always a state version and a channel
version of any problem. We’'ll focus on channels, but
could equally well focus on states.
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Outline

ot o Basi
« Quantum Capacity

« Additivity and nonadditivity

* Quantum boost for classical networks
* Quantifying quantum correlations
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Quantum Capacity

Encoder

@
Decoder

L.  |If we try to transmit
— an arbitrary

= quantum state, we
— >~ arrive at the
guantum capacity,

e Q(N).

« The quantum
capacity, measured
In qubits per
channel use, gives
the ultimate limit on
quantum error
correction.
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Q(%V) = max

# qubits sent

# channel uses
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 Quantum Capacity

Encoder

j Decoder| Q(j\/) '

L.  |If we try to transmit
— an arbitrary

= quantum state, we
— >~ arrive at the
guantum capacity,

« The quantum
capacity, measured
In qubits per
channel use, gives
<\ the ultimate limit on
quantum error
correction.
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Vo
Q(%V) = max

# qubits sent

# channel uses
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Noisy Quantum Channels

* Noiseless quantum evolution: p — UpUr
Unitary satisfies UTU = |

* Noisy quantum evolution: unitary
Interaction with inaccessible environment

0) —— —— E

p— N = U

p —— I

Think of optical fiber: E is the dof that absorb the light




Coherent Information

0)— -
Input from
sender A \ A U
p I
1Y)

Q(l)(N) —

Coherent information:
how much more
information goes to B
than E
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1

“max[I(R; B) — I(R; E)]
2 1)

I(R;B) = S(R)é'(B) — S(RB)

Mutual information
of R with output

E N¢(p) complementary channel fromAto E

B <t— N(p) channel fromAto B

— 1@ Uy Y)Yl @ UL

A ---Alice
B ---Bob
E ---Eve

Mutual information
of R with environment S
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Lloyd-Shor-Devetak (LSD) Theorem

10)— - E =1 N°(p) complementary channel fromAto E

Input from | '
senderA A
p
T 1 Q Uy [YXYII ® U A -—-Alice

) . o
---Eve

—— B +t— N(p) channel fromAtoB

Q(N) = QW (N) +— Random coding

Q(N) = li_)rglo% QM (N®T) «— Optimization over infinite
’ number of variables

Lloyd 97, Shor 02, Devetak 04

Pirsa: 21020023 Page 28/58



Pirsa:

22222222

Outline

» tnformation—Ttheory Basics

- Quantum-Capacity

« Additivity and nonadditivity

* Quantum boost for classical networks
» Quantifying quantum correlations




Additivity tells us that resources g
only interact trivially

Additive: trivial interaction Nonadditive:
nontrivial interaction

C(Ny X N3) = C(Ny)+ C(N;)
Q(Ny ® Ny) > Q(Ny) + Q(N)

Smoothies are quick and easy. Bread is delicious, but takes time.
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Degradable Channels
have additive coherent information

10)— - E =1 N°(p) complementary channel fromAto E

Input from l '
senderA} A

—— B +t— N(p) channel fromAto B

— U A ---Alice

" [ Q Uy [YXPI Q Uy 8 --Bob
E ---Eve

R__
A channel is degradable if there is a way to degrade the output N ?
B to get the environment E: A o
There’s a channel M such that e >
N¢(p) = (M > N)(p)

For degradable channels, we have QP (N®") = r QW (N), so

Q(N) = }LTO%Q(D(N@”‘) = Q(N) = %rﬂ/?)x[l(R;B) — I(R; E)].

/

T~ lcan actually do this

Devetak-Shor CMP 2005 Optimization over |y)

Pirsa: 21020023

Page 31/58



More general.

If private classical capacity to
environment P(Ng) = 0, ’7en

Q(N) = Q*(N)

Degradable: Watanabe ‘12
( additive Q*
 Lesson 1) for some channels Q1(N) is right

 Lesson 2) nonadditivity of Q1(N) intimately connected to
information sent to the environment.

e Lesson 3) Q(N) < Q'(N) + P(N) (Hirche ‘20)
« Lesson 4) Most channels aren’t degradable.
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Approximate Additivity

Suppose we have a channel that
has very low noise N = I.

Then, very little information gets
leaked to the environment.

Since a lot of information goes to
the channel output, and not much
to the environment, the ouput can
do a pretty good job mimicking the
environment.

Leditzky-Leung-Smith. PRL ‘18
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Nonadditivity of Coherent Information

1
W (N) == I(R;B) — I(R; E
Q (N) Zmaxllp)RA | ( ) ( )]
~
0™ is the rate achieved by random code that looks like p, =
Trr| Y)Y

You can do better by picking structured codes.

Basically random codes that look like some py4, 4 . Structure
within a block of length n. QU (N®") > nQ(W(N). The channel is
interacting nontrivially with itself.

Goal: we want to know, given N, what kind of structure good
codes should have. Ideally, a compact prescription for
generating such capacity achieving codes in terms of typical

enarace and antrnniac
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Nonadditivity of Coherent Information

There are several examples of channels
with nonadditive coherent information

Depolarizing: [//
I
Ny(p) =1 —-p) + Py

Divincenzo-Shor-Smolin ‘98
Smith-Smolin, '07
Bausch-Leditzky, '20...

Dephrasure:

Let D,(p) = (1 —p)p + pZpZ and
Eq(p) = (1 —q@)p + qle)e|
Np,q(p) = Eq(Dyp(p))

Leditzky-Leung-Smith. PRL ‘18

Smith-Smolin ‘09
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Nonadditivity of Coherent
Information

Vs10) = v/s|00) + V1 — s[11)

ngll) = 121)
Vs|2) = |20)

Properties: i

- Q1 nonadditive even away fron@

27

<. C =1, P=1 for channel
- C=1, P=1 for complement
- Optimizing state not usual
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Nonadditivity: quantum
resources interact nontrivially

Clean examples can help us work towards
general coding strategies.

New features VS pointing towards different,
more environment-focused approach to
gquantum capacity.

It's about learning the recipe for
good error correcting codes for
a channel.
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Smith-Yard ‘08
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Superactivation:
using zero capacity channels

I

1

-

Not only can you get

——2Q(N; ® N3) » QN+ Q(Ny)
You can also get '

Q(N; ® N;)>0 when Q(N;) =0, Q(N;) =0

These are two seriously different resources
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Additivity and Nonadditivity

« Additivity tells us we are on the right track with random
coding

* Nonadditivity tells us we are missing some key ideas
about generating good structured codes.

« Complicated examples (to analyze and/or construct)
obscure what's happening.

 Increasingly simple examples point towards new
strategies (with more explicit role of environment info?)

| focused on coherent information and quantum capacity,
but similar stories for classical capacity, private
capacity...
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Simplest classical network:
Classical Multiple Access Channel (MAC)

-,

2 senders one receiver

Leditzky-Alhejji-Levin-Smith,
Nature Comm. 2020

A

\(* la, b) b——

B

Conditional probability distribution

Goal: capacity region
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Capacity of MAC

— If A and B are Independent.

7 Can achieve:
N(z|a,b) —2-

_ [1)1 é[(an‘B)
Ry < I(B; Z|A)
¥ Ri+ Ry <I(A,.B: 7).

I(A;Z|B) = H(AB)+H(ZB)-H(ABZ)-H(B)
“conditional mutual information”

Take the convex hull,
that’s the capacity region.

Ahlswede and Liao 72
See also, Cover & Thomas textbook
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MAC + entanglement:
Two very different resources that work well together

1) Entanglement boosts capacity region of
classical MAC
(contrast to 1> 1 classical channel)

2) Fixed size classical channel may require
infinite entanglement to reach capacity

3) Classical MAC has single-letter formula,
but it's NP-hard to evaluate

Basic idea: Force two senders to win a nonlocal game (aka violate a bell inequality):
if they win, message sent faithfully, if they lose, randomize it.

(related: Quek-Shor ‘17,
Noetzel-Winter ‘20)

Note: entanglement assistance
Doesn’t help regular classical channel .
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Referee

Nonlocal Game

Alice

Bob

Alice and Bob are separated.

A referee sends question x to Alice
and question y to Bob according to
known distributions.

Alice replies with a, Bob replies with b.

Rules of game say which question-answer
pairs are allowed.

Can do better with entanglement.
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Achievable Regions with and without entanglement

—— Inner bound on C(Ng,,)

=== Constraints on C(Ng,,s) given by (6)

--=-= Upper bound u(d*)

L3
~ 1 )
L,':‘
Magic Square Channel
0.5 Look how bad the outer
bound is!!!
Mermin magic
Square game Y0 0.5 1 1.5

N
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Outer bound for MAC:
Relaxed Ahlswede-Liao region

— If A and B are Independent.

7 Can achieve:
N(z|a,b) —2-

_ L)lél(an‘B)

/.7 Ry < I(B;Z|A)

" Ri+ Ry < I(A,B:; Z).

I(A;Z|B) = H(AB)+H(ZB)-H(ABZ)-H(B)
“conditional mutual information”

Take the convex hull,
that’s the capacity region.

Ahlswede and Liao 72
See also, Cover & Thomas textbook
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MACs summary and outlook

« Entanglement doesn'’t help point-to-point classical
channel.

 MAC: simplest classical network. 2 senders 1 receiver.

» Capacity region boosted by entanglement between
senders. Force senders to play a nonlocal game.

» Construction shows NP-hard to evaluate MAC region.

Does entanglement help more natural channels?
Efficient outer bound that’s tighter than relaxed A-L region?
How classical and quantum networks best work together?
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Outline
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« Quantunt Capacity
—Additivity-and nonadditivity

* Quantum-boestforclassical networks
» Quantifying quantum correlations




Quantifying Quantum Correlations

Given a mixed multiparty state p,

A2 how much correlation does it hold,
and what kinds of correlations are they?
A1 A3 What are they good for?
How hard are they to make?
Dsznsnans Are they classical or quantum?

Entanglement entropy works for two party

ure states.
A5 A4 2

For two party mixed states, we know a lot.

We especially want to understand more than two parties:
Gives more refined information, Tools for understanding quantum networks,

many body quantum systems (e.g., topological entanglement entropy appears
to be at least 3 party)

Alhejji-Smith IEEE TIT 2020, Levin-Smith IEEE TIT 2020, DeWolfe-Levin-Smith PRD 2020
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Optimized formulas

Coherent information: /

1
QW (N) = Elrtrplflx [I(R; B) — I(R; E)]

Entanglement assisted capacity: 1/

C.(N) = @ﬁ‘:j’(&m

Squashed entanglement: /
1 (=

Eq(pas) = 5infI(4; BIE)

Where I(A;B|E) = S(AE)+S(BE)-S(ABE)-S(E) and psg = Trgpagk
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Bipartite Correlation measures

e Ep = inf(S(AV))
+ Eq =inf(S(A) + S(B) + S(AV) — S(BV))

e Ep = %inf(S(AB) + S(A|V) — S(B|AV))
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Detour: Correlations in the AdS/CFT Correspondence

CFT on boundary of asymptotically AdS spacetime <==>
Quantum gravity theory in the bulk

conformal boundary

- sy _ Areal)
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(Ryu and
Takayanagi 2006)




Ryu-Takayanagi formula and
the entanglement wedge

\,

g

~ 4Gn Entanglement wedge of A:
bulk region bounded by A and I,.
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Ew(paB)
4G

Conjecture: Ep(pyp) =

Takayanagi/Umemoto 18, Swingle et al 18
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Bipartite correlation measures

e _Eq = ~min[S(A) + S(B) + S(4a) — S(Ba)]

A

e Ep =-min[S(AB) + S(Bla) — S(A|Ba)]
e S(A) = Ey(A: B) + I (E)A)

EQ

Levin-DeWolfe-Smith PRD 2020
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Even the vacuum is very interesting!

Goal: use these correlation measures
to access geometrical information about
the entanglement wedge

Multiparty correlations

Tripartite Optimized Correlation

Bipartite Optimized Correlation Measures
Measures

Eg(A: B) = % iuf '[l’;lu i B)+ I(A:b)]

Er(A: B) 1 'ul' (Aa : B)+ I(A : blc

2Eo(A: B)

DeWolfe-Levin-Smith PRD 2020
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Multiparty correlations and holography

« Holographic states: useful tool for understanding
qguantum information

 (Gives a care where we can evaluate distillable
entanglement I (E)A)

« Seem nice enough that additivity is more common
(Epis not thought to be additive in general, but is here)

« Seeds conjectures: e.g.,

1
Ep’(pap) = lim HEP (Pﬁn) = Er(pag) ?
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Summary

* Interaction between many quantum resources is
nonadditive.

Challenge: hard to evaluate capacities, understand
Opportunity: possibility of finding better recipes, effects

« Classical MAC + entanglement: specific nontrivial
interaction. Unexpected richness of classical network.

» Nice/axiomatic correlation measures capture different
sorts of multiparty correlations. Operational
understanding TBD. Admit geometrical interpretations for
holographic states.
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Graeme Stewart Baird Smith
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THANK YOU
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