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Abstract: The Principle of Equivalence, stating that all laws of physics take their special-relativistic form in any local inertial frame, lies at the core
of General Relativity. Because of its fundamental status, this principle could be avery powerful guide in formulating physical laws at regimes where
both gravitational and quantum effects are relevant. However, its formulation implicitly presupposes that reference frames are abstracted from
classical systems (rods and clocks) and that the spacetime background is well defined. Here, we we generalise the& nbsp;Einstein Equivalence
Principle to quantum reference frames (QRFs) and to superpositions of spacetimes. We build a unitary transformation to the QRF of a quantum
system in curved spacetime, and in a superposition thereof. In both cases, a QRF can be found such that the metric looks locally flat. Hence, one
cannot distinguish, with a local measurement, if the spacetime is flat or curved, or in a superposition of such spacetimes. This transformation
identifies a Quantum Local Inertial Frame. These results extend the Principle of Equivalence to QRFs in a superposition of gravitational fields.
Verifying this principle may pave afruitful path to establishing solid conceptual grounds for a future theory of quantum gravity.
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Finstein Equivalence Principle
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Locally Inertial Frames
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What are reference frames?

Operational view of reference frames

Rods and clocks

Quantum systems: superposition, entanglement
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classical spacetime superposition of spacetimes




What are reference frames?

Operational view of reference frames

Rods and clocks

Quantum systems: superposition, entanglement

S, \ X N o o R ) O OO N

Quantum Reference Frames
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Adapted from Misner, Thorne, Wheeler "Gravitation™

In any and every Quantum Locally Inertial Frame (QLIF), anywhere
and anytime in the universe, all the (nongravitational) laws of physics
must take on their familiar non-relativistic form.

Gravitational field G

Test particle M “surveying” the gravitational field

Particle P serving as a Quantum Reference Frame




Generalisation of the EEP
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Quantum system in a Quantum superposition of
superposition in spacetime classical spacetimes
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|dentification across spacetimes
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Different identifications correspond to different measurement choices.




Physical comncidences

Coordinates of M
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Von Neumann-like measurement

M probes the metric field anywhere it has support
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Yon Neumann-like measurement

What is the metric field at P?
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EEP for Qus
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EEP for Quantum Reference Frames

Generalise Locally Inertial Frames transformations

Principle of linear superposition applied twice

I. Within the same spacetime (positions)
2. Across different spacetimes (metrics)
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T'ransformation to a QLIF

Classical and curved spacetime

Different transformation at each point xp

|. Centre origin in xp
2. Straighten coordinates around xp
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Transtormation to a QLIF

Superposition of classical spacetimes

Different transformation at each point xp and for each g/
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Metric in the QLIF

State in the Quantum Locally Inertial Frame (QLIF)
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Conclusions

Generalisation of Quantum Reference Frames to curved spacetimes and
superposition of spacetimes.

Introduction of “Quantum Locally Inertial Frames™

For every quantum state of a system P living in a superposition of classical
spacetimes, one can find a Quantum Locally Inertial Frame transformation to the
Quantum Reference Frame of P such that the metric is locally Minkowski at the
origin of the Quantum Reference Frame.

Not covered: Freely-falling quantum systems
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