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Abstract: Various links between supersymmetry and the normed division algebras
R,C,H,O were found in the

1980s. Thistalk will focus on the link between K=R,C,H,0 and
supersymmetric field theoriesin a Minkowski spacetime of dimension
D=3,4,6,10. Thefirst half will survey the history starting with a
1944/5 paper of Dirac and heading towards the links found in 1986/7
between R,C,H,0 and super-Y ang-Mills theories. The second half will
review aresult from 1993 that connects, via a twistor-type transform,
the superfield equations of super-Maxwell theory in D=3,4,6,10to a
K-chirality constraint on a K-valued worldline superfield of N=1,2,4,8
worldline supersymmetry. This provide an explicit connection of
octonions to the free-field D=10 super-Maxwell theory.
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Supersymmetry and RCHO revisited

Paul K. Townsend

University of Cambridge
o D=3,4,6,10 and K = R, C, H, O and supersymmetry.
Some history: 1945-1990

o Massless particles, Lorentz harmonics and celestial spheres.
1991-2 work of

o Twistor-like transform for D = 3,4, 6. 10 super-Maxwell
equations and K-chirality for N =1, 2,4, 8 worldline superfields

“Octonions & SM" workshop, 15 Feb 21

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Dirac's wartime ‘braneworld’

The 1944 /5 Proceedings of the Royal Irish Academy includes a paper by
Dirac on “Applications of Quaternions to Lorentz Transformations”. This
paper cites no one and has rarely been cited. It contains the following
observations:

o Lorentz group in a 6D Minkowski spacetime is SL(2; H)

o SL(2;H) acts by fractional linear transformations on the celestial
4-sphere HP?.

o Restricting to Minky C Minkg one finds that
SL(2;H) — SL(2; C)

where SL(2; C) acts by fractional linear transformations on the
celestial 2-sphere CP! ¢ HP?

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Many years later ...

N-extended susy 2D sigma-models. Metric on target manifold M is

o Real for N=1

o Kahler for N =2 ( )

o HyperKahler for N = 4 ( )
o Flat for N = 8, but dim M = 8m for integer m

In addition, a superspace formulation of N-extended 4D SYM suggested a

connection of N = 1,2 with C, H ( jlk
By considering the maximal (Minkowski) spacetime dimension D
permitted by susy, one sees that ( )

D=2+dimK, K=R,CHO.

Expected for RCH (2 from | Spin(1,1 + dimK)) = SL(2; K)

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Lorentz groups in D = 3,4,6,10

0 . SL(2; R) = Spin(1, 2)

o : SL1(2; C) = Spin(1,3) x U(1)

o : SE(2: M) = Spia(l,5)

o : SL(2;0) = Spin(1,9) [alg ;

]
Check: S/(2;K) has 4dim K — 1 generators for K = R, C, H, but
Problem due to failure of Jacobi identity
where E(A, B) € G,. Since dim G, = 14, the correct count is
dim[s/(2; Q)] = 31 + 14 = 45 v
Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Super-Yang-Mills and RCHO

o 1976. construct SYM for D = 2.,4,6, 10.
An identity cubic in D-dim commuting spinors is required. However,
D = 3 is maximal for the assumed (1, 1) susy, not D = 2, so no
connection to R, C, H, O was suspected.

o 1984. find same cubic identity for GS superstring:
now D = 3.4, 6, 10.

o 1986. interprets cubic identity as Jordan identity for 3 x 3
hermitian matrices over K = R, C,H, O (as does in 1994)

o 1987. interprets cubic identity in terms of the Adams

“trialities” that are satisfied only for K = R, C, H, O.

Aside: Supersymmetry and the Magic square

1983. relate D = 5 Maxwell-Einstein supergravity
theories to cubic-norm Jordan algebras, and recover Freudenthal-Tits
magic square by dimensional reduction to D = 4, 3.

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Conformal groups for D = 3,4,6, 10

Define SpT(Qn; K) as group preserving skew-hermitian quadratic form

For n = 2 we have the conformal isometry groups of Minkowski spacetime
in D=3,4,6,10

o . S5p(4; R) = Spin(2, 3)

o . Sp'(4;C) = Spin(2,4) x U(1)
o . Sp'(4;H) = Spin(2,6)

o Sp'(4; Q) = Spin(2,10)

These are conformal isometries of Minky
For K=R,C,H, we have dim[sp(4; K)] = 6dimK + 4

For K = © the add 14 rule again applies:
dimsp(4,0)=6x8+4 + 14 =66 v

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Rotation subgroups of SL(2; K)

Define SOT(n; K) as group preserving Hermitian quadratic form. For n = 2
we get rotation groups for D = 3, 4,6, 10:

o . SO(2;R) = U(1) = Spin(2)

o . SOT(2;C) = U(2) = Spin(3) x U(1)
o . SOT(2; H) = Sp, = Spin(5)

0 . SOT(2; Q) = Spin(9)

These are rotation subgroups

For K=R,C,H, we have dim[so(2; K)] =3dimK — 2

For K = O apply add 14 rule
dim[so(2; )] =(3x8—-2) + 14 =36 v

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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A String/M-theory digression

Fluctuations of planar static M2,D3,M5 branes of string/M-theory yield
maximal-susy field theories on a Minkowski worldvolume of dimension
d=3,4,6 [and d = 10 ' , |

Corresponding planar static supergravity solutions have near-horizon
‘AdSx S’ geometries . Note sequence of
super-isometry groups

o d =3. M2-brane : 0O5p(8|4;R)

o d =4. D3-brane : (0OSp)'(4|4;C)

o d = 6. M5-brane : (0OSp)'(2|4; H)

o d = 10. HM9-‘brane’: (OSp)'(1]4;Q) ?

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Lorentz (co)vectors and RCHO

For spacetime dimension D = 3, 4,6, 10 we can represent position in
Minkowski spacetime by a 2 x 2 Hermitian matrix X over R, C, H, O:

01 X

For K = R, C, H, Lorentz transformation of D-vector is

X — LXLT, det(LL") = 1

For co-vector, e.g. particle momentum, we have

P — (LT~ 1PL?

Trace reversal

—~

If hermitian M is a vector then M := M — (trM) I, is a covector. And

—~
o~ —~

M=M, MM=—(detM)L

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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The (super)particle and RCHO

Action for particle of mass min D =3,4,6,10 is

S= /dt {%trR(XP) + Se (detP — m2)}
The Casalbuoni-Brink-Schwarz superparticle for D = 3,4, 6, 10 requires
dX — dX + (0dOeT — 61de).
for Grassmann-odd S/(2;K) spinor ©.

» D = 6,10 constructions for m?> = 0 using H, Q spinors were given in
1988 and again in 1994

. Schray also found a simple presentation of the ‘cubic identity’,
discussed further in

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving the mass-shell constraint

For massless particle we have det P = 0. We may solve this in terms of an
S1(2; K) spinor U since

P=UU = detP=0

Whereas U has 2dim K components, the null D-vector P has only
D—1=dimK+ 1, so U is subject to gauge transformation, which is
right-multiplication by a unit-norm element of K. These are the groups

Z, U1, su@, s

For massive particle P = UU" for invertible matrix U
Now gauge invariance is U — UR for R € SOT(2; K).

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Celestial spheres as SL(2;K) coset spaces

For any D, the Lorentz algebra spin(1, D — 1) has the decomposition
h_ @ ho @ hy; ho = spin(D — 2) & so(1,1),

where the (D — 2)-vectors hi are raising/lowering operators for SO(1,1)
weight. The subalgebra hg = hg & h+ generates a maximal parabolic
(Borel) subgroup Hg of Spin(1,D — 1), and the celestial (D — 2)-sphere is
the coset space

Spin(1,D — 1)/Hp, Hg = [Spin(D — 2) x SO(1,1)] x H+.
» For D = 3,4,6,10 we may write . € S5L(2;K) as a pair of spinors:
L= (EF U ) [equivalently, (L)~ = (V4, V_)]

where (U, V_) have weight +1 (and the others —1)

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Integrating over a celestial sphere

Lorentz invariant measure on celestial sphere involves only (U™, V_)

because only these spinors are Hi-inert. Because ,

it = VA gt

is Hg-invariant except for its non-zero weight. It can be used to construct
a measure dp of weight 2dim KK, so an integral is Hg-invariant if the
integrand has weight —2dim K

» For D = 3,4 the spinors U™ and V_ are in equivalent Lorentz reps.

Celstial spheres as projective lines

Hg acts on U™ as right-multiplication by a non-zero element of K. This
tells us that SL(2;K)/Hg = KP!

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving the 3D wave-equation

A positive-energy solution to [Jp(x) = 0 can be written as

Ip-X g ~ d2p p-Xx =~
6 = [d e 5()o(p) = [55 €7 5(p) (2= Iol).
Set /" and use dp; A dps = 2pYdQ A T dut to get

O = | otdut >~ iQxt _ E—
$(x) Ld UO dQ e sD(P)] leuf( i)

with xTT = (7" ¥u™). By construction f(\°xT \ut) = A\72f(xTT, u™)
- 2 _
» O¢ = [, dp 02 . f=0
=0 (because is null)
Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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4D and the twistor transform

A positive-energy solution to [J¢p(x) = 0 can be written as

B(x) = / du F(H,ut)  xct =Xt et
o e, :

where u™ is complex 2-cpt Weyl spinor, and f has weight —4 since
dil= (Eaﬁu:;dug) A (e‘wﬁgdﬂg) = |u1|*dz A dz (z=u2/11)
= duf =dzAdzF for zero-weight function F = |u1[*f.

» As S? is symplectic manifold we can use the Duistermaat-Heckman
theorem to localise contributions to points on S, which can be expressed
as contour integrals — Penrose’s twistor transform solution.

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 3D super-Maxwell equations

The 3D superMaxwell equations are equivalent to the following equation
for anticommuting spinor superfield W(x, 6):

Solutions to this equation can be written as

woz :f dﬂ U(_; U)(X++:9+7U+):
Sl

where 1) is any (anticommuting) worldline superfield of weight —3:

«
DV = / du ( )DL yp(xTT, 07, u),
51
=if) (because u™ is commuting spinor)
Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 4D super-Maxwell

Now we have D, W =0 for anticommuting complex Weyl-spinor
superfield W(x, #,6). As for 3D, solutions can be expressed as

v, :/ du ul P(xt,0%,0Tu™)
S2

where 1) is now an N = 2 worldline superfield of weight —5. However, it
is now constrained by the chirality condition on W:

0= DV, = f dis e B
52

= D,1 =0]| i.e. ¥ must be a chiral N = 2 worldline superfield.

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 6D super-Maxwell |

Use SL(2;H) = SU*(4) to replace U™ (V_) by 4-cpt chiral
‘symplectic-Majorana’ spinors:

ut - ot Vo o vy

The 6D Maxwell antichiral spinor superfield \IJJ?‘(X,H) satisfies
(i) Diwe =0, (i) DUw)? =0

B

Using i , solve (i) by

a a Ar++ p+ A+
vi = [ divey ufoct ot o),

for [SU(2) x SU(2)]-vector N = 4 worldline superfield ) of weight —9.

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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10D preliminaries
Use 16-cpt chiral spinors of Spin(1, D — 1). Write L € Spin(1,D — 1) as

A —A 15T
L=(uu;?) — (LY :(ViA»VfA)
where the 16 spinors are separated into two Spin(8) 8-plets of of opposite
chirality and SO(1, 1) weight. As before, we can use only the
positive-weight spinors (u7 el f’A) for integration over the celestial sphere.

»> |t is essential that the 10-vector T Ayu™” (summed on A) is null. It
is null (by cubic identity) because (v, u,) € Spin(1,9) imposes

O,

—+A +B 5/48(

yuT =3 Sou==)

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 6D super-Maxwell Il

To solve (/i) we need to impose the following worldline superfield
constraint:

(i)Y DL =0
There are four components of 1/){;-\ and four supercovariant derivatives:

where o and T are two triplets of Pauli-matrices. In terms of the
quaternionic worldline superfield ¥ = v, +1i - ¥, the equations (i)’ can be
written as

Dy +i-D,p =0,

»> Generalizes N = 2 chirality condition (D, + iD1)1) = 0 for complex v

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 10D super-Maxwell

The 10D super-Maxwell equations for chiral spinor superfield W are
(i) DaW* =0, (i) [y**“Dla¥* =0

We can solve (i) by
v :/ dp ve; wA(x++,9+, u™)
S8

Now have an 8-plet of N = 8 worldline superfields; equivalently an
octonionic-valued superfield 1> on an octonionic worldline superspace with
supercovariant derivatives D = D, 4 e - D, where e are the 7 imaginary
units. Then (ii) is solved by imposing

Dy+e-D,yp=0.

An

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Last thoughts

For a superparticle in a target space of dimension D = 2 + dim K, the
number of worldline susy charges is

N = dim K
while the number of susy charges of the field theory in D =2 + dim K is
N, =2dimK

But the susy field theories describe fluctuations of BPS on worldvolumes
of dimension d = 2 + dim K, and these are sources in supergravity theories
for which the number of supersymmetry charges is

Ng = 4dim K

and K = O yields 32 supersymmetry charges.

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving 6D super-Maxwell |l

To solve (/i) we need to impose the following worldline superfield
constraint:

(i)Y DL =0
There are four components of 1/)1/;-\ and four supercovariant derivatives:

V= +ie)y ¥, Dia=04D. —i(r)a - D

where o and 7T are two triplets of Pauli-matrices. In terms of the
quaternionic worldline superfield ¥ = v, +1i - ¥, the equations (ii)" can be
written as

Dy +i-Dop =0,

»> Generalizes N = 2 chirality condition (D, 4 iD1)1» = 0 for complex v

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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Solving the mass-shell constraint

For massless particle we have det P = 0. We may solve this in terms of an
S1(2; K) spinor U since

P=UU' = detP=0

Whereas U has 2dim K components, the null D-vector P has only
D—1=dimK+ 1, so U is subject to gauge transformation, which is
right-multiplication by a unit-norm element of K. These are the groups

Z, U1, su@, s

For massive particle P = UU" for invertible matrix U
Now gauge invariance is U — UR for R € SOT(2; K).

Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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A String/M-theory digression

Fluctuations of planar static M2,D3,M5 branes of string/M-theory yield
maximal-susy field theories on a Minkowski worldvolume of dimension
d=3,4,6 [and d = 10 ' i

Corresponding planar static supergravity solutions have near-horizon
‘AdSx S' geometries . Note sequence of
super-isometry groups
o d =3. M2-brane : 0O5p(8|4;R)
o d =4. D3-brane : (0Sp)'(4|4;C)
o d =6. M5-brane : (0OSp)'(2|4; H)
o d =10. HM9-'brane’: (OSp)'(1/4;0Q) 7
Paul K. Townsend (Univ. of Cambridge) Susy and octonions “Octonions & SM" workshop, 15 Feb '21
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