Title: Finite quantum geometry, octonions and the theory of fundamental particles.
Speakers: Michel Dubois-Violette

Collection: Octonions and the Standard Model

Date: February 08, 2021 - 12:05 PM

URL.: http://pirsa.org/21020008

Abstract: We will describe an approach to the theory of fundamental particlesbased on finite-dimensiona quantum algebras of observables. We will
explain why the unimodularity of the color group suggests an interpretation of the quarklepton symmetry which involves the octonions and leads to
the quantum spaces underlying the Jordan algebras of octonionic hermitian 2 A— 2 and 3 A— 3 matrices as internal geometry for fundamental
particles. In the course of this talk, we will remind shortly why the finite-dimensional algebras of observables are the finite-dimensional euclidean
Jordan agebras and we will describe their classifications. We will also explain our differential calculus on Jordan algebras and the theory of
connections on Jordan modules. It is pointed out that the above theory of connections implies potentially alot of scalar particles.
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General framework

» External geometry: Lorentzian spacetime M
C(M) with Poincaré group action and equivariant

C(M)-modules.

» |nternal geometry : Finite quantum geometry
J= finite-dimensional algebra of quantum observables with
some further structure = G C Aut(J) and equivariant
J-modules.

» = J =C(M, ), J-modules and connections
= gauge Interactions, etc.
J defines an “almost classical quantum geometry”.
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Internal space for a quark

E ~ C3 with (color) SU(3) action

SU(3) € U(3) = E is Hilbert with scalar product (e, e)
Unimodularity of SU(3) = volume = 3-linear form on E, vol(e, e e)

= antilinear antisymmetric product x on £
vol(Z1, 2o, Z3) = (Z1 X Z», Z3)
SU(3)-basis = Orthonormal basis (ex) of E such that
viey,ep,e3) =1

By chosing an origin SU(3)-basis <+ SU(3)
2 products x : EXE —w Eand (,)  EXE —C
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Pi

Unital SU(3)-algebra

IIIII

SU(3) ={U € GL(E)|x and (, ) are preserved }
| Zu x Zo |I°=|| Zu |1?]) Z2 |I* —[{Z4, Z2)I°

add aunit =Cah E 1= (1.0)
(1,0)(0, Z2) =(0,Z2) = (0, Z)(1,0), (z1,0)(z0, 0) = (2120, 0)

(0, Z1)(0, £2) = ({21, £2), 821 X Z3),|a| = |B] =1
:}“ (O?ZI) HQH (0? Z?) HQZH (0? Zl)(o:' Z?) H2

natural to require || (z1, Z1)(20, Z£o) ||=|| (21, Z1) |||| (20, Z2) |
solution :

(21.}. Zl)(ZQ? Zg) — (2122 — <Zl.} ZQ) Z1Ly + 201 + i1 X ZQ)
=(2,-Z)(2,2) = (2, 2)(2,-Z) =[| (z, Z) |* 1

: 21020008
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An interpretation of the quark-lepton symmetry

SU(3) is the group of complex-linear automorphisms of C ¢ E
which preserves the above product and E carries the fundamental
representation of SU(3) while C corresponds to the trivial one.

= E being the internal space of a quark, it is “natural” to consider
C as the internal space of the corresponding lepton.

As a real algebra C & E is 8-dimensional isomorphic to the
octonion algebra O

SU(3) C Gy, = Aut((D) is the subgroup preserving /, a given
imaginary element of O with /2 = —1.
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The 3 generations

6 flavors of quark-lepton

(u? I""E)? (d? e)? (C? VM)? (5? !u’):' (f:' V’T):' (b? T)

grouped in 3 generations, columns of

This sort of “triality” combined with the above interpretation of
the quark-lepton symmetry suggest to add over each space-time

generations

quarks Q@ =2/3 u & t
leptons @ =0 Ve Uy Uy
quarks @ = —1/3 s b
leptons @ = —1 e 7 T

point the finite quantum system corresponding to the exceptional
Jordan algebra.
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Quantum geometry - |

J (real vector space) quantum analog of a space of real functions.
Squaring x — x? for x € J such that x.y = %((x + ¥)? — x> — y?)
is bilinear.

J is power associative if by defining x"T1 = x.x"

(i) x".x%=x"ts

J is formally real if one has

A finite-dimensional commutative real algebra J which is power
associative and formally real is a Jordan algebra, that is one has

xz.(y.x) — (xg.y).x.,. Vx,y € J.

ooy e @ Jordan algebra is also called an Euclidean Jordan algebrarses



Quantum geometry - ||

Condition (i) and (ii) are necessary for spectral theory (with real
spectra).

There are various infinitecdimensional extensions of the above
theorem =- various formulations of "quantum geometry”, etc.

In most cases the Jordan algebras which describe quantum
geometries are hermitian (real) subspaces of complex x-algebras
invariant by the anticommutator x.y — %(xy + xy).

= |n these cases one can use the noncommutative geometric
setting.

Pirsa: 21020008 Page 9/41



Properties of finite-dimensional Euclidean Jordan algebras

Let J be a finite-dimensional Euclidean Jordan algebra.
Then Jhasaunit 1€ Jand Vx € J

= Z)xrer? e8s = 0pser e J, Ay e R

rel,

with 1= > ., e, card(Ix) < n(J) €N
= functional calculus with R[X].

Furthermore J is a direct sum of a finite number of simple ideals.
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Finite-dimensional simple Euclidean Jordan algebras

Theorem

A finite-dimensional simple Euclidean Jordan algebra is isomorphic

to one of
c=1 R
& =72 J3 = J5pinpt1 = R1+ R”H? v o =gkt on =

€= 3 J?} — Hg(R)? J?? = Hg(@)? Jg’ = Hg(H)? J?B) — Hg(@)

c=n>4 JL=Hy(R), J2 = Hy(C), J* = Hp(H)

n n

These correspond to the “finite quantum spaces’ (i.e. “real
function's spaces’ over the “quantum spaces’ ).
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The “octonionic factors” J28 and J§

The above interpretation which connects the quark-lepton
symmetry and the unimodularity of the color group points the
attention to the factors

J5 = Hy(©) = JSping

J5 = Hy(0)

together with the subgroups of Aut(J$) = Sping and of
Aut(JZ) = F4 which preserve the splitting @ = C ¢ C? (and act
C-linearly on C3).
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Action of Gsyy = SU(3) x SU(2) x U(1)/Zeg on 3

Sping = Aut(J5), the subgroup which preserves the splitting
O =Ca C?is the group Gsym. To express this action write

Gy X
()_( @)EJQ?

GG o x N (G z 2 3
()_( @)_<Z C2>+ZEJQ$C

where x =z4+ Z € C & C? represents x € (. The action of
(U, V) € U(3) x SU(2) is then
H— VHV* Z— UZon H®Z e J: pC3.

This is in fact an action of SU(3) x SU(2) x U(1)/Z¢ = Ggpm.

as
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Action of SU(3) x SU(3)/Z3 on J§

Fq = Aut(JE), the subgroup which preserves the representations of
the octonions occurring in the matrix elements of J5 as elements
of C @ C3 is SU(3) x SU(3)/Z3. To express this action write

(1 X3 Xo
X3 (o x| €S8
Xy X1 (3

Z3

1 Zy
23 (& 21| + (41, Zp, Z3) € J5 & Ms(C)
Zy 71 (3

as

where x; = z; + Z; € C & C3 is the representation of x; € O.

The action of (U, V) € SU(3) x SU(3) is then
H i+ VHV* M UMV* on Hg M ¢ J2 & M3(C).
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The Zs-splitting principle

Yokota suggests a simpler formulation (Arxiv: 0909.0431),
i € C corresponds to i € O = Z3 C SU(3) C Gy = Aut(©). The
Z3 action on @ is induced by w € Aut((D)

1 3
w(z+ Z)=z+wZ, wi= —§+ gi
One has w® = [ and this also induces a Z3-action by
automorphism, again denoted w, on Jg (then w € Sping) and on
J8 (then w € F). The corresponding subgroups leaving w

invariant are given by
(G2)" = SU(3)

(Spine)™ = Gom(= SU(3) x SU(2) x U(1)/Ze)
(Fa)" = SU(3) x SU(3)/Z3

irsa: 21020008 Page 15/41



Exceptional quantum factor

J5 = Hz(®) = {3 x 3 hermitian octonionic matrices}

» Albert has shown that it cannot be realized as a part stable
for the anticommutator of an associative algebra.

> |t follows from the theory of Zelmanov that this is the only
exceptional factor.
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Center

A arbitrary K-algebra; the center Z(A) of A is the set of the z € A
such that
[x,z] =0, Vx € A

and
[X?y?z]:[X?Z?y]:[z?x?y]zo? \vfx?yeA

where [x,z] = xz — zx, [x, ¥, z] = (xy)z — x(yz), Vx,y,z € A
Z(A) is a commutative associative subalgebra of A.

Assume that A is commutative. Then one has :
zeZ(A) = [x,y,z] =0, Vx,y € A

[x,z] = 0 is clear ; [x,y,z] = —[z, ¥, x] = 0 by commutativity and
again by commutativity [x, y, z] — [y, x, z] = 0 implies [x, z, ] = 0.
PIrSE:I:ZlOZOTSE [-y:| Z? X] E _[X? Z? y]) Pag 41



Derivations

A arbitrary K-algebra ; a linear endomorphism o of A is a
derivation of A (into A) if it satisfies

O(xy) = d(x)y + x0(y), Vx,y € A
The space Der(A) of all derivations of A isa Z(A)-module
(z0)(x) = zd(x), Yz &€ Z(A),"x c A
Der(A) is also a Lie algebra
[61, 65](x) = 61(02(x)) — 62(d1(x)), Vo1, 0o € Der(A),7vx € A

One has
0(Z(A)) C Z(A), 7o € Der(A)

and

[51, 252] = 2[51, 52] -+ 51(2)52, \?/51?52 - DEF(A), Yz € Z(A)
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Categories of algebras

K a fixed field ; all vector spaces, algebras are over K

A category of algebras is a category C such that its objects are
algebras and its morphisms are algebra-homomorphisms.

Calg = category of all algebras and all algebra-homomorphisms
Calg, = category of unital algebras and unital
algebra-homomorphisms

Clie = category of Lie algebras

Cjord = category of Jordan algebras

Clord, = category of unital Jordan algebras

Ca = category of associative algebras

Ca, = category of unital associative algebras

Ca, = category of all associative algebras but morphisms sending
centers into centers.

Ccom = category of commutative algebras, etc.
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Bimodules

C a category of algebras
A € C an object, M a vector space such that there are

A M- Madm—amand MQA—-M m® ar— ma
define the product (A M@ (A M) - A M
(adm @ (a em)—ad @& (am + ma)

M is an A-bimodule for C if
1. ApgMeC
2. A— Ad M is a morphism of C
3. A M — Ais a morphism of C

Examples : Bimodules for the above categories (exercise !)
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Jordan (bi)-modules |

J Jordan algebra, M vector space with

JeM—-M, x@0+— xP
MJ M OQx+— dx

such that the null-split extension J & M
(x B P)(x' D) = (xx Dxd + dx')
Is again a Jordan algebra then M is a Jordan bimodule

(i) x® = dx
&< (i) x(x°®) = x?(xP)
(iii) (x*y)® = x*(y @) = 2((xy ) (x®) — x(y (x®)))
If Jhasaunit1cJ Mis unitalif
(i) 16 =0
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Jordan (bi)-modules Il

J, M being as before, set L,d = x® then (Ji) reads
[L_;.(.}. LXE] = 0
while (iii) reads

Le, —Lol, — 2Ly L+ 2L L, =0

¥

which is equivalent to

{ [.z— 3L+ QL)% =0
[[Lm Ly]: Lz] =i L[x,z,y] =0

where [x, z, y] = (xz)y — x(zy) is the associator. Condition (Jiii)
reads
L1 = 1(= Iu)
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Free J-modules and free Z(J)-modules |

J a Jordan algebra is canonically a J-module which is unital
whenever J has a unit.

Lemma

Let J be a Jordan algebra, E and F be vector spaces and let
w: JRE— JQF be aJ-module homomorphism. Then one has

e(Z(J)QE)Cc Z(J)® F

Choose basis (ey) and (fy) for £ and F. One has

p(z®ey) = M ® f for z € Z(J) and some m) € J. On the other

hand one has (xy)z = x(yz) forany x,y € J

= o((¥)z2@ ex) = (y)p(z @ en) = xp(yz R ea) = x(yp(z ® eq))
& [x,y,m] =0. []
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Free J-modules and free Z(J)-modules |l

Let J be a unital Jordan algebra. Then J® E — Z(J)® E and

(0 JQE—=-JRF)—= (0| Z(NHRQE Z(N)QE - Z(JY® F) is
an isomorphism between the category of free unital J-modules and
the category of free unital Z(J)-modules.

Indeed from the above lemma ¢ [ (Z(J) ® E) is a Z(J)-module
homomorphism of Z(J) ® E into Z(J)® F.

Conversely any Z(J)-module homomorphim

wo: Z(J)® E — Z(J) ® F extends uniquely by setting
xpo(l® E) =¢p(x® E) € J®F as a J-module homomorphism.
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Clifford algebras as JSpin-modules
Cfpyq is a unital module over J§ = JSpin,. 1 via

L, (A) = %(’M + Av)

Canonical isomorphism of Zy-graded vector space (PBW)
M- ARt C€H_|_1? Wi oejy 7 r(w) = {7 5% 1), ,.}fh o ,.},fp

= Clppy = @pE5MP with TP = [(APR™H)

For any integer p < %n, 2P @ 2Pt s an irreducible
J3-submodule of Clpyq and if n+1 = 2m then [2m ~ R js also an
irreducible submodule of C4, 1 = Clypy,.

Pirsa
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Jg—modules

Any Jordan algebra J is canonically a J-module which is unital
whenever J has a unit.

The list of the unital irreducible Jordan modules over the
finite-dimensional Euclidean Jordan algebras is given in [Jacobson].

In the case of the exceptional algebra one has the following
proposition

Any unital irreducible JS-module is isomorphic to J5 (as module).

In particular, any finite unital module over J% is of the form JS @ E
for some finite-dimensional real vector space E. Thus the
complexified J5 @ C of J2 is a free J5-module.
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J3-modules for 2 families by generation

iy v+t v,—c¢

I = D, — t o Ve + U
Vy+C Ve— U Q3

81 T+b jp—s

Ji=1 7—b B e+d
-5 €—ad B3

or with the previous representation

a1 Vr Uy

o = U Qo Ve + (u, c, t)
Vy Ve Q3
LT R

Jd = T 52 € + (d? 5, b)
po & b

new Majorana particles = OK for the cancellation of
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Problem with the U(1) x SU(2)-symmetry

g=(z1, ) =21+ 20 € H
The subgroup of Aut(IH) which preserves i is U(1)

21 + zpf v+ 21 + €2y

&1 9\ _ (& 2z 0 4 4
(C_i 52)(21 Ez)JrZQ(J' 0>EJ2

Subgroup of Aut(J;y) which preserves -- - = U(1) x SU(2)

& zy U ¢ &z i b 0 J
(-51 52>+22<J' 0>H’U<51 €2>U+e ZQ(J' 0)

dsS
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Triality in J§ and the 3 generations

Two ways to describe the underlying triality of J5:

W1 - this triality corresponds to the 3 octonions of the matrix of
an element of J2

W2 - this triality corresponds to the 3 canonical subalgebras of
hermitian 2 x 2 matrices of Jg corresponding themselves to the 3
octonions of W1.

W1 and W2 are equivalent but lead naturally to 2 conceptually
different interpretations. In fact JS = JSping corresponds to a
complete generation.
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J$ = JSping for one generation

1. Aut(J9) = Sping
Gsp = SU(3) x SU(2) x U(L1)/Zs is (=) the subgroup of
Sping which preserves the splitting C ¢ C® of 0 and acts
C-linearly on C3.

2. The x-algebra Ci§ = M16(C) ®& M16(C) is generated by the
relations

%(xy—kyx):xoy, ‘v’x,yEJg
X =X Vx € J3

3. J8 is strongly special.
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The correspondence “triality-generation” in J§

P? = P, primitive= pure state of J;?

e J3(P) = (11— P)J5(1— P) ~ JSping

Aut(J5(P))= subgroup of F4 which preserves P ~ Sping

P; diagonal < J5(P;) <+ generation j (i € {1,2,3})
SU(3). x SU(3)

Aut(JB(P))) N = G SU(3)c x SZU(Q) x U(1)

Each J2(P;) with the identification @ = C & C? has automorphism
group G; C F4 isomorphic to the standard model group for one

generation
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The extended electroweak symmetry SU(3)q,

Ji = J3(P), Aut(J;) ~ Spino
SU(3)¢ x SU(3)/Z4 C Fy = Aut(JE)
Aut(J)) C R4
SU(3)e x SU(3)/Zs N Aut(J;) = G;
Gi ~ SU(3). x SU(2) x U(1)/Zs¢

= The second SU(3) project onto the electroweak symmetry for

each generation .
This SU(3) will be called extented electroweak symmetry and

denoted by SU(3)ew.
Internal symmetry SU(3). x SU(3)ew/Z3 C F4
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Differential graded Jordan algebras

(0 = Bpen 2 which is a Jordan superalgebra (for N/2IN)
ab=(—1)1Ppa for a € G2l p e QP
and graded Jordan identity

(— 1)l L, Ldgr + (—1)1P1RI[ Ly, Laler + (=D)AL, Lp]gr = O

with a differential d
d? =0

don c Qi
d(ab) = d(a)b+ (—1)lad(b)

Model for algebras of differential forms on quantum spaces.
Differential calculus over J = differential graded Jordan algebra {2
with Q¥ = J.
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Derivation-based differential calculus

J unital Jordan algebra with center Z(J)

Ber(J) = HomZ(J)(A%(J) DEF(J)? J)

Qper(d) = Bn25.,(J) is canonically a differential graded Jordan
algebra with

k

dw(Xo, -, Xp) = Zogkgn(_l)kxk w(Xo, ’?'?Xﬂ)

referred to as the derivation-based differential calculus over J.

irsa: 21020008 Page 34/41



Universal property for J

Any homomorphism o of unital Jordan algebra of J§ into the
Jordan subalgebra Q1° of a unital differential graded Jordan algebra
Q) = @O" has a unique extension @ - Qpe(J5) — Q as a
homomorphism of differential graded Jordan algebras.

QDE,,(JE) = Jg @ Afy with the Chevalley-Eilenberg differential.
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Derivation-based connections |

J= unital Jordan algebra, center=2(J), M= unital J-module.
A derivation-based connection on M is a linear mapping X — V x

of Der(J) into £L(M) such that for x € Jand z € Z(J)
{ Vx(xm) = X(x)m+ xV x(m)
Vx{(m) = zVx(m)

curvature of V

Rxy = [Vx,Vy] = Vix v
{ Rx y(xm) = xRx y(m)

R.x,v(m) = zRx y(m)
g C Der(J), Lie subalgebra and Z(J)-submodule

= derivation-based g-connection on M (by restriction).
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Derivation-based connections ||

Qper(M) = Homz(y(ADer(J), M), V linear endomorphism of
Qper(M) such that

[ V(Qpe (M) € L (M)

| V(w®) =d{w)P + (—1)"wV (D)

forany myne N, w e QF_(J) and ¢ € Qpe (M).
= curvature V?

V2 (wd) = wV?(P)
Let V be such a connection and define Vx(m) as in | by
Vx(m) = V{m)(X)

for me M =Q_(M), X € Der(J)
Conversely, V as in | = V as here with

V(®)(Xo, -, Xn) = Z;:U(_l)PvXp(qD(XU? SR > X))
(1) DX X, Koy



General connection

() = ¢f2" = differential graded Jordan algebra, I = @I'" graded
module over €1
A connection on ', is a linear endomorphism of [ satisfying

WAT®), € [l
{ V{iwd) = d{w)d + (—1)"wV (D)

forw e Q" dcl =
V{(w®) = wV3(P)

V? homogeneous {-module homomorphism of degree 2 is the
curvature of V.

V="V
is the Bianchi identity of V.
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Connections on free modules

J unital Jordan algebra, M = J @ E free J-module, €2 differential

calculus over J such that  is generated by J = QU as differential
graded Jordan algebra.

V:Q®E - Q®E connection induced by V: JQE - Q'@ E.

0
1. V=d®Ig: J® E = Q' ® E defines a flat connection on M
which is gauge invariant whenever the center of J is trivial

2. Any other {1-connection V on M is defined by

0
V=vV+A:JQE = Q'® E where A is a J-module
homomorphism of J @ E into Q' @ E.

3. If QQ = Qpe, (i.e. for derivation-based connections) one has
(VX Y)=Rxy =
XAy — YAx + [Ax, Ay] — Aix vy, VX, Y € Der(J).
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Connections on Clifford algebras as JSpin-modules

Any X € Der(J]) = so(n+ 1) has an extension as derivation of the
Clifford algebra Cé,11 =

0
Vx =Xl
defines a derivation-based connection which is flat
0 0 0 0
Rxv=[Vx, Vy]— Vixy;=0
Any other connection (for {2pe,) is of the form
0
Vx =Vx +Ax
where Ax is a Jj-module endormorphism of CZ,41 which depends

linearly of X € so(n+1).
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