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Abstract: The problem of quantum gravity -- i.e. to determine the microscopic structure underlying quantum mechanical theories that reproduce
genera relativity at long distances -- is a magjor outstanding problem in modern physics.&nbsp; Solving the quantum gravitational scattering
problem is one sharp way to address this question.&nbsp; While in principle effective field theory (EFT) provides a systematic framework for
solving scattering problems, in quantum gravity the complete answer requires an infinite number of measurements and thereby fails to predict
details of the microscopic structure.

| will present two developments that provide new insight into the gravitational scattering problem. &nbsp; Thefirst is a class of infinite-dimensional
symmetries generically found to arise in gauge and gravitational scattering.& nbsp; The infinite number of constraints implied by the symmetries are
equivalent to quantum field theoretic soft theorems, which prescribe the pattern of soft radiation produced during a scattering event.& nbsp; The
second development is a reformulation of the gravitational scattering problem in which Lorentz symmetry is rendered manifest and realized as the
action of the global conformal group in two dimensions.& nbsp; This reformulation, which involves scattering particles of definite boost weight as
opposed to energy, offers a new approach precisely because it does not admit the decoupling of low and high-energy physics that underpins the
traditional EFT approach.&nbsp; | will describe new perspectives ensuing from these developments on various properties of the gravitational
scattering problem, including collinear limits, infrared divergences and universal behavior associated to black hole formation.& nbsp;
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THE PROBLEM OF QUANTUM GRAVITY:

What is the microscopic structure underlying quantum mechanical
theories that reduce to general relativity at long distances and low
energies?
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WILSONIAN EFFECTIVE FIELD THEORY

Include all terms a
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terms, o1 d by
At low-energy with fixed precision can ti ( number of terms.

to finitely many terms, at

Answer in Wilsonian format:

Microscopic structure of gravity is captured by an effective action with an
infinite number of diffeomorphism-invariant terms.




A SMALL IMPROVEMENT = A CRITICAL INSIGHT:

What about field redefinitions?

sle: In four-spacetime dimensions, can remove all R? corrections:
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Manifest in Scattering Amplitudes:

Only two distinct 3-graviton on-shell amplitudes
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Takeaway: phrase problem of quantum gravity in terms of




CONSTRAINTS ON SCATTERING AMPLITUDES:

Causality, analyticity and unitarity

Implies positivity conditions on coefficients in EFT expansion

Universality at high energies

EBlack hole formation

Universality at low energies
Soft theorems <« Infinite-dimensional (asymptotic) symmetries

Problem appears highly constrained!

Challenge: How to simultaneously impose all constraints?




A SHARP QUESTION IN QUANTUM GRAVITY:

What is the space of consistent scattering amplitudes In
quantum gravity?




OUTLINE

Introduction and Motivation
The problem of quantum gravity
Scattering in quantum gravity

Low-energy Constraints: Asymptotic Symmetries and Soft Theorems
Asymptotic symmetries: Why the scattering problem admits infinitely many symmetries
Soft theorems: How the scattering problem is constrained

Celestial Amplitudes: A Coalescence of UV and IR

Recast scattering problem: particles in boost eigenstates

Revisit constraints
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CONSTRAINTS
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SYMMETRY IN SCATTERING PROBLEMS

= Symmetry

Transformation that leaves the laws of physics (i.e. equations of motion) unchanged.

= Maps solutions to solutions.

]

Scattering problem
= Given initial state of system. what is the final state after time evolution?
= Assume at early/late times, degrees of freedom are well-separated & non-interacting.

=  MNon-trivial dynamics captured by map from initial to final states (*5-matrix").

]

Symmetry of scattering

= Transformation of initial and final states that preserves the S-matrix.




ASYMPTOTIC
SYMMETRIES
PRIMER

Why infinitely many?

Points on “final” sphere out of causal contact
= Independent time translational symmetry at each point

= Infinite-dimensional enhancement of translation group
ST - it

Supertranslations
(of BMS)

A
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The Celestial Sphere
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SUPERTRANSLATIONS

[ |

]

Independent translation symmetry at cvery angle on the celestial sphere
Desynchronization of events at different angles on the celestial sphere
Infinite-dimensional symmetry group

= Infinitely many constraints




®  |n quantum field theory (QFT),
initial /final state : |in/out) = |p1,p2,---) = a'(p1)a’(p2) - - - |0)
"\IH_HNI,-I_-IF'
et icles
= 5Splution to scattering problem:
(out|S|in)

L] : universal relation among scattering amplitudes

lim E{out|a(E)S|in) = { > S-) L.‘a‘;} (out|S|in)

E=0 '
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= Physically, particles only probe physics.
= Goal: soft theorem = Ward identity {:mlt:[Q. 5:|ill} — {)
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» Can always interpret soft theorems as statements of invariance of the S-matrix under an infinite-dimensional symmetry

Weinberg's Soft Graviton Theorem % (0.0)

I
]im}u.:-{unl.;u H(wZ)S|iny = Z Si(x){out|S|in)
L —l

k=1
~ Regard soft factor 5, as eigenvalue of single particle state under operator Qy \ /

Si(®)|pr) = Qu(0, d)|pr) = —id(g )| Pr)

» RHS gives transformation of single particle states under &g 4

Zfﬁ.{rmt Slin} = {out|[Q@#, S]|in)
k=1

» Soft theorem implies that the S-matrix is invariant under the transformation &y 4, of single particle
states provided that '




Weinberg’'s Soft Graviton Theorem

lim (out|wa, (wi)S|in) = Sk (out|S|in) = (out|[Qx, S]|in)

wi—+
k=1

» Denote operator which adds soft particles (s

: : b w(e.2)
Qs(0,0) ~ lillh L [u+ (wE)+a_ {;u.i‘]} :

s

~ Then, the LHS can be written as

1.5”},’:*”” lwa (wE)S|in} = —{out||Qs, S]|in) /
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» Rearranging the soft theorem
{UIHHQ. S]HIJ} =) Q=0+ s

= Obtain statement of invariance under symmetry generated by ()

» Can always interpret soft theorems as statements of invariance of the S-matrix under an




Construction of local charges

» Parametrize symmetry transformations by functions f (8, ¢) rather than points (&, ¢). u(e.2)
x
» Obtain charges with Jocal action (i.e. action only depends on [ at point (8}, ¢)) /
. e 1 . . """——._____.--"'"'-.
—id5|pr) = Qu[f]|pr) = wi f (O, Ox)|pr) /

Equivalence with supertranslations

» When f = 1, find total energy » Generic f = f(0,¢):

—if=1|pr) = wrlpr) —10f[pi) = wif (Ei)pr)

= Q[f = 1] generates ordinary time
translations

= f parametrizes amount of translation at
every angle




CONSTRAINTS FROM SUPERTRANSLATIONS

» To fully appreciate constraints from supertranslations, reexamine the soft charge:

Qs(f, @) ~ .ll'lE.Irl W [n.(u;.?'} +al (;;J.F'}] ~ lim / dt e"Ve*' 0, h;:];i

e ‘”’ _.L,-"':'I.]1

» The soft charge is the zero-frequency component of the radiative gravitational field.

: . i Follows from
Rs(0,¢) ~ "’ Ahy,, : e
/ru -~ 8{)
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» The soft charge 1s also equal to the net shift in the asymptotic metric.
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Gravitational-wave bursts with memory
and experimental prospects

Vladimir B. Braginsky® & Kip S. Thornet

permanent change in the gravitational-wave field (the burst's
memory) 8hi is equal to the ‘transverse, traceless (TT) part'™
of the time-independent, Coulomb-type, 1/ feld of the final
system minus that of the initial system. If P* is the 4-momentum
of mass A of the system and P is a spatial component of that
d-momentum in the rest frame of the distant observer, and if k
is the past-directed null 4-vector from observer to source, then
Shi' has the following form:

4P;‘P;j)"’1'

5*‘3T=5(EAW«




GRAVITATIONAL MEMORY &
SUPERTRANSLATIONS

» Measures net shift in radiative gravitational field!
~ Answers the question of how to measure soft radiation!

> Tile the celestial sphere with inertial observers and
measure the change in their relative displacements.

Interpretation: Vacuum Transition
~» Change in displacements

— Change in connection on celestial sphere

[Strominger & Zhiboedov, hep-th/1411.5745]

..--""""r._.—._'_

Relative displacement induced
by radiative gravitational field:

As* ~ Ah¥s;

~ lim /rit e hY s;

w—+0 :

(Geodesic Deviation Equation)



Deep Inelastic Scattering in Regge Limit

We = P exp (?;g §£ ,4) COLOR MEMORY IN EXPERIMENT
JC

Net relative color rotation [MP, Raclariu, & Strominger hep-th/1707.08016;
Ball, MP, Raclariu, Strominger & Venugopalan, hep-ph/1805.12224]




CELESTIAL
AMPLITUDES: A
COALESCENCE

OF UV AND IR




HOLOGRAPHY
INSPIRED BY ASYMPTOTIC
SYMMETRIES

* Subleading soft graviton theorem

< \Virasoro Ward identity

[Kapec. Lysov, Pasterski, Strominger,
hep-th/1406.3312]

» Could scattering in 4D quantum
gravity be captured holographically
by a 2D conformal theory?

Rigid structure of ordinary 2D CFTs
= New insights for quantum gravity?

Mo verdict yet, still enlightening to recast
amplitudes in manifestly conformally
covariant form.
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2D CONFORMAL SYMMETRY OF SCATTERING AMPLITUDES

Why did we find the conformal group of two dimensions?
4D Lorentz group S0(3,1) = 2D global conformal group SL(2, T)
How can the conformal symmetry be made manifest?

Construct observables that transform simply under dilations.

What type of scattering states transform simply under dilations?
Dilations in 2D identified with Lorentz transformation in 4D.

. diagonalize translations

s: diagonalize boost & dilation on celestial sphere




Identify massless momentum with point on S2; /

;”P' — Ld(l Ef(f":" (bj)

Identify boost in direction p# with dilation on sphere:

CONSTRUCTION
OF BOOST
EIGENSTATES ~ Generator of boosts along p*:

K = wd,

ks

p* — p'* = \p*, T — AT

> K is diagonalized by the Mellin transform

)




Celestial Amplitude

A(A;, 3 = (H /1 ey uf‘* i ')A(;r;}l

k=1" L

Stereographic Projection

Conformal Covariance

az + b a b .
= . = SL(2,C
" ez + (r: (.lr) € ( }

A(A;, zi, 7)) — (H (czp + d) ™ (&3, ﬁ—r?]_h L )A[ﬁ;. Zi, Zi

k=1

(transformation of correlation functions in 2D CFT)

CELESTIAL AMPLITUDES AS
CONFORMAL CORRELATORS

)

&




CONSTRAINING CELESTIAL AMPLITUDES

Having recast our question in the language of celestial amplitudes, next revisit constraints.

- Poincaré
s - internal, asymptotic, ...

s — unitarity, causality, soft behavior at high energy, ...

Upshot: constraints take simple, manifestly Lorentz-covariant form in celestial amplitude




2 - 2 SCATTERING ON THE CELESTIAL SPHERE

Conformal (Lorentz) symmetry fixes z; dependence

; Lheh;=h: LR=h:=h.\ =
A » 7Y = | | 5B i iz3 i T Af A 5
AL I|..-:.-'|I-.-:.-',|-jl b ( a.r” '{“Ii-.}- )A[ oa A s

i<

Depends non-trivially only on the conformal cross ratio

Translation symmetry = momentum conservation
Spatial momenta lie in a plane
Plane intersects celestial sphere on a circle
Four points z; must lie on circle

Cross ratio must be real




2 - 2 SCATTERING ON THE CELESTIAL SPHERE

Expect Poincare symmetry to be more constraining
Recall massless scalar 2 — 2 scattering in momentum space
Lorentz symmetry
A = Alpi - pj)

Translations = pi * p; are independent

b

4 A -
s=—=\p1+p2): 2P

L i (4) E

A= IVHH l'lj 0 ( .”ﬁ)' f -l + ]”::J.': -2p)

=1

Bud

Does something similar apply to celestial amplitudes?

Can identify ratio of invariants with conformal cross ratio S (scattering angle)

3

What replaces the overall energy scale?

; !3'&,
" 0.




2 - 2 SCATTERING ON THE CELESTIAL SPHERE

Revisit massless scalar 2 — 2 celestial amplitude:

Parametrize Mandelstam invariants
by center of mass energy w and
conformal cross ratio z;

Al 20 H/ Efw’r I"UI (s,1) (Z;JA)

k=1

|
~ [ H/ o ~ 3= [0~ e 2), o= 2
|
—(IXTJ.;—L)

[Arkani-Hamed, MP, Raclariu, & Strominger, hep-th/2012.04208]




2 - 2 SCATTERING ON THE CELESTIAL SPHERE

Arrive at following decomposition:

Fixed by kinematics = M(}3, 2)

(captures dynamics)

.f:(iﬁ,—l)

M (dynamical content) related to momentum space matrix element (at fixed angle) by single Mellin transform!

Center of mass energy w traded for sum of conformal dimensions £ + 4

di




BEYOND THE WILSONIAN PARADIGM

Wilsonian paradigm: low-energy physics is insensitive to the details of the UV

Realized explicitly by consistent truncation of EFT expansion at low energies

Celestial amplitudes are sensitive to UV physics
Drastic difference if truncate EFT expansion

Really only exist for consistent UV complete theories

UV sensitivity is conseguence of scattering boost eigenstates, which contain contributions of arbitrarily high
energy.




BEYOND THE WILSONIAN PARADIGM

Consider scattering of massless scalars mediated by massive exchange

M>

M(s) ~ A———

In momentum space, admits low-energy (EFT) expansion

w* W
I‘u’I[wJ > —.:’\(J. -+ F"‘ W 'f"") ;

Consider celestial amplitude for leading term
" dw 4 B=ib . . -
M(3) ~ —w" (=) "= =274 (b)
0

Subleading corrections ruins marginal convergence (diverges at upper limit).

Celestial amplitudes don't exist for truncated EFT's!




BEYOND THE WILSONIAN PARADIGM

Simple result for full (not truncated) amplitude

M= . imwet™P
= M(B) - A;u*“l"‘“—

)

il g

Celestial amplitudes don’t really exist for truncated EFT expanded amplitudes.

Do we expect celestial amplitudes to exist in theories of quantum gravity?

“ Yes! Universal soft behavior at high energy is a crucial ingredient.




SOFT UV BEHAVIOR IN QUANTUM GRAVITY

High-energy scattering at energies > Mpan-k iS dominated by black hole production

Black holes are produced with order 1 probability

1~ |(in|BH,)[? — (BH;in) ~
!

e>8H black hole

Amplitude for producing microstates
. (=

black hole microstate [

Implies exponentially soft UV behavior in exclusive 2 — 2 amplitude

':A..-':.-'_:a":i!f' I I} I- g = .|I||.__._--|'_|:'
Ag o T~ E (out|BH;)(BH/|in) ~ e SBH E eter —¢1 )
I |

SpH/f2
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CELESTIAL AMPLITUDES IN QUANTUM GRAVITY

Quantum gravity:

: , . g

Exponentially soft behavior at high-energy in momentum space / I’!r;a.,'_ _.f{_—wf_-"."-l'_e_
[ ¥ r
Convergence at upper limit of integration i
Analyticity in f along positive real axis
Quantum field theory:
Power-law falt-off at high energies / “dw 4 2 |
Wi ™M~ -

Converges for f < 2Zm W 8 —2m

Poles at positive even integer [#

e 3 a 1
S0 bt i il _ dw g4 A< iTe

B | EJ; xal ]!-l _."Wl:’i‘] — / — -:'l‘.— — ..:I'L.lllf-r—
o

y W w2 — M2 1 — eimf




SOFT THEOREMS ON THE CELESTIAL SPHERE

Do soft theorems constrain celestial amplitudes (where states are energy eigenstates)?

Symmetry interpretation supports the existence of a celestial avatar of soft theorems.

Yes, celestial amplitudes are constrained by asymptotic symmetries!
Strategy: Apply similar logic used to deduce QFT UV behavior (l.e. power law fall-off) directly from celestial amplitudes.

Behavior of celestial amplitudes due to soft expansion is determined by focusing on lower range of integration.

f l.rl!rw'.»l.-' A

1 f ,_‘&1 = W (w)
]{[..J..-I:I = —d{=1) + Ay T+ .'_,.'._,:'I’I|:|:| S # fl; ' ./{I j‘ :

w .
_ / 'I'Li.e' s T !f.:”':
B w! E W iny ™~ E
J0 J _"'L - n
1

I--‘\';
i

Residues of poles at integer A< 1 give coefficients of Laurent expansion about w = 0.




SYMMETRY CONSTRAINTS ON CELESTIAL AMPLITUDES

Mellin transformation of Laurent expansion:

o I S ~ - 71}
flw) = w”r_—l': + Qeoy + Way T+ - - Ji) ML_"'-. e

T

1

f admits Laurent expansion about w = ( f admits simple poles at A = 1,0, —1,

Soft theorems:

| - ; - y
Anyr(wi) = ( % 5[11| ALK 'Hllj T *'vhl[gj) Ap+--- ‘ I‘I{ZH_A-,.! 1 |.-"—"'t.-}__'§.,...| e -5.;”;..:"]”;

- Residues of polesin A
Expansion in energy w; of single external particle esidues of poles I

Asymptotic symmetries = Leading coefficients in soft expansion are universal.

Simple poles at graviton 4; = 1,0, —1 with universal residues.

3
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SUMMARY AND OUTLOOK

Scattering amplitudes are central to the study of quantum gravity.
Scattering in gravitational theories is constrained by infinite-dimensional symmetries.
Soft theorems for scattering amplitudes
4D scattering enjoys Virasoro symmetry of 2D CFT's.
Construction of celestial amplitudes, representing scattering of particles in boost eigenstates.

Universal constraints on high and low-energy behavior of momentum space scattering amplitudes translate into
powerful constraints on the analytic structure of celestial amplitudes.

Focused on analytic structure in ff. Expect interesting dependence on conformal cross ratio z

(Apply conformal bootstrap technigues?)

< No Wilsonian UV/IR decoupling — What can we learn about UV completions by asking standard CFT questions?
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