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Abstract: In this talk | will present a general framework to distinguish different classes of charge& nbsp;insulators& nbsp;based on whether or not
they insulate or conduct higher& nbsp; multipole& nbsp;moments (dipole, quadrupole, etc.). This formalism applies to generic many-body systems
that support multipolar conservation laws. Applications of thiswork provide akey link between recently discovered higher order topological phases
and fracton phases of matter.
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Classical Multipole Moments of Point Charges
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Classical Multipole Moments of Point Charges

Constraints for Independence of Global Origin of Coordinates

o =
Q7 - QY + PRI + PPR' + ®R'R’

For n-th moment to be well-defined all lower moments must vanish.
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Multipole Moment Density in Materials

Polarization p' (dipole moment per volume) is only well-defined in a neutral material

)% O0=DP'N

Quadrupole density q'J is only well-defined in neutral, unpolarized materials
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Multipole Moment Density in Materials

Polarization p' (dipole moment per volume) is only well-defined in a neutral material

)% O0=DP'N

Quadrupole density q'J is only well-defined in neutral, unpolarized materials
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Note: In their intrinsic dimensions each multipole moment density has units of charge.

Pirsa: 21020001 Page 8/62



An Operational Definition of Quadrupole Moment

Take an insulating sheet that is neutral in the bulk, and unpolarized.
- +‘_ + o +_ +

Attach polarization only
on boundary.

J0-0C0- €
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An Operational Definition of Quadrupole Moment

Take an insulating sheet that is neutral in the bulk, and unpolarized.

P>

Attach polarization only
on boundary.

P1
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An Operational Definition of Quadrupole Moment

Take an insulating sheet that is neutral in the bulk, and unpolarized.
P N
.-\ ;| Attach polarization only

\ /7

e 35 on boundary.

Py Qcor= P11P,
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An Operational Definition of Quadrupole Moment

Take an insulating sheet that is neutral in the bulk, and unpolarized.

P> ./’
@ =®@=&- 41 /, Attach polarization only
-0 - $ - @ =  onboundary.
{- -6-0-¢ )
DOOOOOO (M1 —
o b L Qo= P11P;
+-F-*F-&+ -
\- - 0-¢ ¢
D-0-0-0-

Bulk quadrupole moment captures the failure of this equation
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An Operational Definition of Quadrupole Moment | |

Take an insulating sheet that is neutral in the bulk, and unpolarized.

P> .,”
Y YY YT T /  Attach polarization only
0-0- $ - @ =  onboundary.
- 9-06-0-@
P-@®-d-®- [P -
T YIYYYYY Qcor_p1+p2
+-F-F - -
’-+—_+.-‘+_— +
- 6-06-6 -

Bulk quadrupole moment captures the failure of this equation
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Part 2: Quantized Multipole
Moments in Crystals

Wiladimir Benalcazar, B. Andrei Bernevig, TLH (Science 2017)
Wiladimir Benalcazar, B. Andrei Bernevig, TLH (PRB 2017)
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Electric Polarization in Crystals
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Electric Polarization in Crystals
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Electric Polarization in Crystals
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Electric Polarization in Crystals
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Electric Polarization in Crystals
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Electric Polarization in Crystals

————————————————
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Electric Polarization in Crystals

e+ He(+)e(+ He(+ ) e(+ e (+
< >
4>

In each case the 1D polarization differs by an integer
multiple of the charge e.

Y
4—7 p=p+me
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Quantization of Polarization in Crystals

Pick a symmetry under which the polarization is odd and enforce it

Ex: Inversion, Reflections, C2 rotations, Charge-conjugation
p=-p
2p=0 mode

p=0ore/2
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Pick a symmetry under which the polarization is odd and enforce it

Ex: Inversion, Reflections, C2 rotations, Charge-conjugation
p=-p
2p=0 mode

p=0ore/2
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Calculation of polarization in momentum space (Vanderbilt, King-Smith 1993)

Given:

H (k)

Construct: Am"(k)

Calculate:

£

ng

BZ

(U (K)

= —1

01; | Unp ( k ) >

Tr [A(k)] dk

T ~ —i0k
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Polarization and Boundary Charge

@ o0 60 60 60 06 0 @

Connection | Conduction Make a quadrupole?

betw_een-bulk L LLR
polarization and . .

boundary charge
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and
polarization are odd. We will impose reflection symmetries M,

and M.,
e o e o ¢ ®
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and
polarization are odd. We will impose reflection symmetries M,
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and
polarization are odd. We will impose reflection symmetries M,

and M.,
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Quantized Quadrupole Model

Expectations:

1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and

polarization are odd. We will impose reflection symmetries M,
and M.,
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and
polarization are odd. We will impose reflection symmetries M,
and M.,
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Quantized Quadrupole Model

Expectations:
1. Quadrupole is formed from two dipoles, expect we need at least
two occupied bands. Want quantized, vanishing polarization.

2. Need to choose symmetries under which quadrupole and
polarization are odd. We will impose reflection symmetries M,
and M.,

e ol Bulk

1 e quadrupole

5 NN .- - density:
qY¥=e/2

® o-—-—-—-0 o-—-—-—-0 o
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Properties of Quadrupole Model
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Properties of Quadrupole Model
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Properties of Quadrupole Model

YA=0 wA=0.5  y/A=1.1
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Octupole Moment in 3D systems

Simplest extension to 3D is with octupole moment o,

0
Need four occupied bands (two cancelling quadrupoles).

Quantized by keeping all three reflections m,, m,, m,
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Part 3: Calculating Multipole
Moments
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Bulk Characterization of Quadrupole

Quadrupole is just a product of two coordinates, e.g., X*Y.
The problem is that the effective electron position operators
in the lattice do not commute with each other and cannot be
measured simultaneously.

Can calculate corner charge o Y
and edge polarization: Qco'r =Pl —dh =" |

Instead we want to be able to diagnose the multipole moments

from the bulk. For the quantized cases we can look for topological
invariants.
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Hidden Topology

Sometimes when a topological invariant is
zero, it can be non-zero in some subsector of
the occupied states.

An example is the Quantum Spin Hall effect
where the total Chern number is zero, but we
can resolve the invariant further by looking at
each spin component:
! |

Chern Number =0 =+1 (spin up) -1 (spin down)

However, in our case we do not have a nice
guantum number like spin to resolve the
topology.
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Resolving Topology in Real-Space

Resolve the electrons in real-space

> Two separate
Resolve in x-direction: clouds/sectors

If we look at each cloud individually is it topological?

+
It I Calculate Berry Phase
y &
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Resolving Topology in Real-Space

Resolve the electrons in real-space

> Two separate
: : — .
Resolve in x-direction: clouds/sectors

If we look at each cloud individually is it topological?

+
It I Calculate Berry Phase
¥y F

+_
-+
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Resolving Topology in Real-Space

Resolve the electrons in real-space

= + -
Resolve in x-direction: ’
- w
+ -
Resolve in y-direction: +

A
-

If both sets of Berry phases are non-trivial,
then it has a topological quadrupole moment!
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(4

Quadrupole phase characterized by nt Berry phase of Wannier
bands in both directions.
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Resolving Topology in Real-Space

What else can we do? Let’s look at 3D

- ., ~ Quasi-2D
C—— Resolve in z-direction: m Electron Clouds

If the Chern number
of each cloud is non-
zero you find a chiral
hinge insulator =
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Other Methods Needed

Different symmetry classes?
- Can use other symmetry indicators.

Non-quantized quadrupole?
- Can go back to surface polarization and corner charge.
Still need vanishing bulk dipole moment.

How can we generically diagnose from the bulk?

What about many-body systems?
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Many-body calculation of electric polarization

Given: |Wq) i y o
B P : T — T
A erry Phase 0 a L;If

q ,
P=—Im / d®(Vy|0s|Po)

-

Ortiz, Martin (1994)
Resta (1999)
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Many-body calculation of electric polarization

1

Given: |¥g) i N o
e Berry Phase: 0 r = L;;;

] ,
P=—Im /d@<‘1’()|3®“1’0>
2r
Manv-bod o2mi X al
any-body — : { = v
Twist Operator: Ux = exp ! L, . leﬂ
a=

Ux|®o) = e*™ (|¥o) + O(1/L))

Ortiz, Martin (1994)
Resta (1999)
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Many-body calculation of electric polarization

1

Given: |Wq) P b
n 1D Berry Phase: o B = B

1 :
P = —Im /d@(@d@q)\‘l’n)
m :

M b d 27-1-?)’\( [\r(‘
any-body A : C — s
Twist Operator: Ux =exp ! y . lea

a=

Ux|®o) = e*™" (|¥o) + O(1/L))

22X = <\I’(J‘UX|\DU>
Ortiz, Martin (1994)
Resta (1999) P = lim —Imlogzx
Ne—o0 2T
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Many-body calculation of electric quadrupole

Given: |Wg) Nested
Berry Phase?
In 2D
No obvious way to do this. Will come back to it later.
27iXY i
i Y[¥) e 5
Many-body Uy = exp XY =) Zafa
Twist Operator: Ly L, p—
zxy = (Yo|Uxy|¥o)
Qry = rlil’ll —Im log ZXY
Wheeler, Wagner, TLH (2018) Ne—oo 2

Kang, Shiozaki, Cho (2018)
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Many-Body Calculation of Quadrupole

It works. Example here is a pumping process going from topological to trivial phase:

os5¢
=
w
= -
@ ae e Quadrupole Moment
® ‘?ﬁ v Edge Polarization
D o5l LA O Corner Charge .
©
=
@)
0 L
0
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Many-Body Calculation of Quadrupole

It works. Example here is a pumping process going from topological to trivial phase:

o5®
=
W
o -
@ gﬁ e Quadrupole Moment
® ‘?ﬁ v Edge Polarization
D o5l A O Corner Charge .
@) b
|-
he
aﬁg T
O 1 ! 1 o —
0 1

0/

But something unusual happens in thermodynamic limit

Insulator:  Ux|¥o) = 2™ (|Wy) + O(1/L)) —— lim [2x|=1

N—>oo

— (0 Sothe phase, i.e., quadrupole moment
is not well-defined in thermodynamic
limit?

But we find: 11111 ‘ZXY
N —oc
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Charge localization and dipole fluctuations

The approach of |z x| to unity in the thermodynamic limit has a physical interpretation.

i For finite size [z x| = 1

. 2
Ch localization length = — lim log | 2
arge localization leng & B g|z \|

Onlyif £ =0

2 — lim — «— Dipole fluctuations

N —00 N /

Ux|¥o) = e*™ (|¥g) + O(1/L))

T
bo
—
e
s
\]
~
|
-
S
S~
N
Woral’

Leads to a criterion:

£ = o0 Metal Resta, Sorella (1999)

Aligia, Ortiz (2000)
& — const. Insulator Souza, Wilkens, Martin (2000)

Even if dipole moment vanishes on average, the fluctuations can
seemingly cause issues with the calculation of the quadrupole
moment.
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Dipole Conserving Hamiltonians

Want to study systems having £ = ()

- Free fermion insulators: Wannier functions must be delta-functions. Too restrictive.

- Many-body insulators: Just need U(1) charge and dipole conservation

Charge: ¢/ e e e = c,TC_}-
. ) iaX iax | f —ia(x+1) ia(x+1) T —iqr
Dipole: e € C(J._y)e Clz+1,y)€ '(J,._|_1.y_'_1)e Clz,y+1)

_ A T One example: ring
= C. NC(x+1,9)C( Clz,y+1
(x,y)( (z+1,y+1) . ) exchange

Pretko, PRB (2018)
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Dipole Conserving Hamiltonians

Want to study systems having £ = ()

Consequence 1:

Ux|®o) = >

Up) Uy |¥y) = 62mP‘”WU>

Consequence 2:

Can couple the system to a rank-2 gauge field, e.g., A:ru [Pretko, PRB (2018)]

i Azy|.T : K| , ,
]C(.zr.y)C(4I7+1*.'/)C’(.1'+l.-g,'+l)c("”-!/+1)

b , 1 -
Clz.)C(@+1,9)Cz 41 y+1)C(z,y+1) —7[C
y y

Heuristically: A, = (81-14_[, + ayAJ‘)

1
2
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Dipole Insulator and Dipole Metal Criterion

Generalize Kohn’s Criterion (sensitivity to shifts in gauge field): A,, — A, + ¢

2
s = W 0 Ey Dipole stiffness
‘ V. 0g? q=0 (aka dipole Drude weight)
272
Dipole localization: A\i=— lim ——Llog|zxy|® (A\a] = Length?

Ng—oo 41+ d

. 1 —2 — .
= lim — ((XY7) - (X7)?)

Ng—o0 d

Quadrupole
fluctuations:

Leads to a criterion:

A\q = const, Dy, =0 Dipole Insulator
/\d — O, Dd = const Dipole Metal

Dubinkin, May-Mann, TLH (2019)
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Rank 2 Berry Phase
Ux|W¥y) = |V¥
For ground states obeying X ‘ U> ‘ U> Polarization vanishes

Uy [®o) = |¥o)

Uxy|®o) = 2™ (%) + O(1/L))

Rank-2 Berry phase gives quadrupole moment!

27
Arc = Ar( T 7
S ey T L.L,

1 '27?/L_,~L”
Quey — 2_1111[ (iq<\p()lat1’\:[}()>

T )
Connection to Araki, Mizoguchi, Hatsugai? (1906.00218)

Dubinkin, May-Mann, TLH (2019)
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An Example Model:

gL TR EN R A e

» oo 1), = % (5D, - 112,)

- - -
1) G o GS) = Q) V),
P

—%—%———%—Fg—— A¢ = a*/2  Dipole insulator

Dubinkin, May-Mann, TLH (2019); You, Burnell, TLH (2019)
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An Example Model:
g AL DA T ] he

ro

Let t=0

_—,:“ /3.:.___1:.1\ /E._ 1) = (\m—!ﬁ)
B eameatoas SN

_ _— -- A¢ = a*/2  Dipole insulator

27/L. Ly

¥(a))p = % (o"% ), e \ﬁ}p) — Im Z ] dq(¥(a)|q (@) = 7

Two dipole insulator phases, t=0 and A = 0 differ by rank 2 Berry phase (quadrupole)
Dubinkin, May-Mann, TLH (2019); You, Burnell, TLH (2019)
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2D Topological "Dipole” Insulator

1D topological charge insulator
® 6 0 6 © o ©° oo o ¢ o

1 1
Seff = — | dedt@e’”'F,, = o /d:r:dt OF,

41 T
= 189
p = Vot T Pl:i
'—189 27
j:x:—zﬂ_f

2D topological dipole insulator

| | i i 1
;EF%*“ﬁ—@;&H:§;/W@ﬂ%w By = 8,0,A0 — 0, Auy

1) 3 ) (3 |

S o= 0.0 ;
PN _b—-—tl .- i Qzy = 5
1 2 4 ] 1 27

Joy = =0

_ - 27
! | ] You, Burnell, TLH (2019)
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2D Topological "Dipole” Insulator

2D topological dipole insulator

-t Seps = %] S

D

N\ G N A
b o b _
: R : Break dipole U(1), 1 {

:'J z""‘y C’; But keep total Ery = 5((9_,-Ey + ()UE,T)

polarization zero

jﬂl ‘f.,\| f;-- % 2D higher order Tl

T __ Pae e ;
Seff = %/d:};dydt q,;,f)ij
o o TS ‘.
Lo e . e
e e SR L
BEEE - - - SR -~ SIS

You, Burnell, TLH (2019)
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Summary: Multipole Metals and Insulators

We propose a refinement of charge insulators

Oth order 15t order 2nd order
Charge ’
Metal
Charge .| Dipole
Insulator Metal
Dipole l Quadrupolﬂ
Insulator Metal
. O,uadrupole]
Insulator

Dubinkin, May-Mann, TLH (2019)
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