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Abstract: Euclidean quantum gravity approaches have a long history but suffer from a number of severe issues.& nbsp;& nbsp; This gives a strong
motivation to develop Lorentzian approaches. Spin foams constitute an important such approach, which incorporate a rigorously derived discrete
area spectrum.&nbsp;&nbsp;l will explain how this discrete area spectrum is connected to the appearance of an anomaly, which explains the
significance of the Barbero-Immirzi parameter and forces an extension of the quantum configuration space, to also include torsion degrees of
freedom. This can be understood as a defining characteristic of the spin foam approach, and provides a pathway to an (experimental) falsification.

All these features are captured in the recently constructive effective spin foam model, which is much more amenable to numerical calculations than
previous models.& nbsp; & nbsp;1 will present numerical results that a) show that spin foams do impose the correct equations of motion b) highlight
the influence of the anomaly and c¢) underline the difference to Euclidean quantum gravity.& nbsp;& nbsp;l will close with an outlook on the features
that can be studied with atruly Lorentzian model, e.g. topology change.

& nbsp;
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for the second part:

2004.07013, PRL Seth Asante, BD, Hal Haggard,

2011.14468 Seth Asante, BD, Hal Haggard
and WIP
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Overview

A rush through history: From Euclidean to Lorentzian quantum gravity and a few surprises.
Effective spin foams.

Testing effective spin foams: Numerical results.
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Emergence of quantum space time

Two view points leading to the same task:
* regulate path integral for quantum gravity via discretization, remove this regulator

* smooth, macroscopic geometry emergent from microscopic building blocks or quantum foam
or shiny apples via a path integral

Path integral: = J@geom exp(:S(geom))

Here: (versions of)

Lots of different choices: : Vi ]
Einstein Hilbert action

-Space of “geometries”
-Measure on this space:
discrete, continuous, measure terms, ...

Remark: | do not think there is a fundamental tension to a suitable adapted canonical approach.
Just that it seems easier to derive the canonical description from the path integral
(including topology change).
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Regge 1961 (Quantum) Regge calculus

geom = * a (fixed) triangulation with piecewise flat geometry
« variables: lengths associated to the edges

2D: (Euclidean geometry) 3D: \I \
. ‘|I .\\\\‘
. | :

.91_; )€ deficit angle = 2x — Z o “"“-Hﬁhxg

a measure for curvature /
/
SE(geom) = = Z VOlbone " €bone Regge action, is a discretization of the Einstein-Hilbert action.
bones

Easier to get than
Boundary terms: 4 Q\ in continuum.

thin wedge thick wedge

w=—29£- w=:r—29,-
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Euclideanization

Would like to compute:

L= [S.Egeom exp(iS(geom))

Integral over N edge lengths with a very complicated action
(involving inverse trigonometric functions of the lengths).
Practically impossibly for N’s needed for continuum limit.
(Additionally, the integration range can be infinite.)

Instead: Monte Carlo sampling: But this works only for (positive) measures,e.g.  exp(—Sg)

In analogy to quantum field theory:
Wick rotate time (parameter) ¢ — if,

exp(iS) — exp(—Sg)

Hugely successful strategy in many areas of physics, e.g. lattice QCD.
Has been often the only available method for evaluating non-perturbative path integrals.
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Euclideanization

But there are two key problems in the case of gravity:

Practical: The Euclidean Einstein-Hilbert action is unbounded from below: Conformal factor problem.
The system will be driven to configurations where -S; is very large.

Conceptual: Space of Lorentzian geometries very different from space of Euclidean geometries,
no precise sense how these can be related via a (coordinate dependent) Wick rotation.

These problems killed (almost) all “Euclidean quantum gravity” approaches:
Regge calculus, (almost) dynamical triangulations, (Euclidean) lattice gauge formulations of gravity, ...

Open question: What do the Euclideanized versions tell us about
the ‘true i-quantum’ versions of the various path integral formulations.
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Example: Spikes in Regge calculus

Ambjorn, Nielsen, Savvidy 1997:
Expectation value of
(sufficiently large power of)
lengths is infinite in
(Putting a positive cosmological constant does not help too much.) Euclidean Regge calculus.

Spikes: Lengths of all edges adjacent to the a vertex are very large.
Have large (negative) S  (in 3D and 4D).

Example: 4D triangulation with inner vertex and six adjacent edges, symmetry reduced to two

Weirdly infrared feature. length parameters x, y. it
Approx. linear growth
—S, y for larger lengths.
/
class. solution ; TOY model:
[Asante, BD, i Y ¢ a(e)) + J'fz dxxNx* exp(ix)
to appear] 7 -
5 £ b(c;) + j: dxx—N exp(ix)
1
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Example: Spikes in Regge calculus

Ambjorn, Nielsen, Savvidy 1997:
Expectation value of
(sufficiently large power of)
lengths is infinite in
(Putting a positive cosmological constant does not help too much.) Euclidean Regge calculus.

Spikes: Lengths of all edges adjacent to the a vertex are very large.
Have large (negative) S  (in 3D and 4D).

Example: 4D triangulation with inner vertex and six adjacent edges, symmetry reduced to two
Weirdly infrared feature. length parameters x, y.

Surprise:
Approx. linear growth
—S, s for larger lengths.
/
class. solution / TOY model:
e
[Asante, BD, . P2 aley) + [* dxx~Nx* exp(ix)
to appear] / —
a000 P b(c;) + j:dxx—-“" exp(ix)
/’/
II:\. x — y
30 40 cut-off
With exp(—S;): Even with I~ measure i
the lengths expectation value is given by the cut-off. Tsss
11.054
11.052
With exp(iSz): (With appropriate measure) 0

the lengthsk expectation value converges and is finite.
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Example: Spikes in Regge calculus

[Ambjorn, Nielsen, Savvidy 1997:]

Expectation value of
Spikes: Lengths of all edges adjacent to the a vertex are very large. (s):l:fe‘:zien:y I:rgiepc:)wer of)

Have large (negative) S  (in 3D and 4D). lengths is infinite in

(Putting a positive cosmological constant does not help too much.) Euclidean Regge calculus.

Example: 4D triangulation with inner vertex and six adjacent edges, symmetry reduced to two

Weirdly i , length parameters x, y. .
eirdly infrared feature gth p Y Surprise:
Approx. linear growth
—S, i for larger lengths.
class. solution y TOY model:
# :
[Asante, BD, - / a(c)) + Ifz dxxNx* exp(ix)
to appear] P .
P b(c)) + L‘z dxx—Nx* exp(ix)
Pl
10 15 5 0 X = y
0 40 cut-off
11.058
What can the -Euclidean version tell us about the L
i-Euclidean version? 084
(l) 11.052
Can such spikes appear in Lorgntzian geometries? i
11.048
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Dynamical Triangulations

Agreement (largely): Euclidean Regge calculus does not lead to a suitable continuum limit.

One reason are spike configurations. Define a measure over (discrete) geometries that could suppress such configurations.

i (Euclidean) Dynamical triangulations: Sum over all triangulations with equal edge lengths.
[Weingarten 1982 Geometry is now encoded into how the simplices are

Ambjorn, Jurkiewicz 1992: | glued together.
first 4D simulations] oY E.g. curvature around a bone is given by the number of

adjacent top-dimensional simplices.

Does clearly avoid very long edges.
But the empire strikes back:

[from Rindlisbacher, : ; crumpled phase
de Forcrand 2015] SHig : : " Branching of baby universes, Ty '

i : Hausdorff dimension : s
# similar to spikes. B _ O
) . : g infinity
typical 4D triangulation
in elongated phase,
Hausdorff dimension
around 2

First order phase transition.
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Causal Dynamical Triangulations Ariorn, Ll 1996

4D simulations: 2004 w/ Jurkiewicz, ...]

Key input: A regular causal structure suppresses baby universes.
(For such causally regular (dynamical) triangulations one can also define a Wick rotation.)

Still use Monte Carlo simulations, that is the Euclideanized action on causally regular triangulations.
(Similar philosophy: Causal sets.)

Condition: exactly two light cones adjacent at each

More general version [Jordan, Loll 2013: 3D] stiacaTia Biaha

spacelike -
edges timelike N
edge |
Very encouraging results: * phase with ‘smooth’ geometry: deSitter phase
* dimensional reduction of spectral dimension from approx. 4 to 2
» strong indications of 2nd order phase transition
Questions: * Horava-Lifshitz or GR (at end point of phase transition line)
* 4D simulation with more general version
* interpretation of Wick rotation, in particular for black hole space times
Remarks: * One has three coupling constants

* Laiho (et al): EDT with baby universe suppressing measure (and three coupling constants)
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Lesson: Lorentzian (causally regular) configuration space can be very different from Euclidean configuration space.

Can even overcome the conformal factor problem, allowing for interesting Monte-Carlo simulation results.

What about Lorentzian Regge geometries!?

Pirsa: 21010024 Page 14/33



Lorentzian Regge Calculus [Sorkin 1975, Sorkin 2019]

[Sorkin 2019] Surprise: The Regge action has imaginary parts if light cone structure is irregular.
Suppresses baby-universes (with the appropriate choice of root).

[coincides with 2D continuum calculation by Louko, Sorkin 1995]

In the following | restrict to Lorentzian d-simplices which have only space-like (d- 1) sub-simplices.

Lorentzian angles deficit angle
(for spacelike bones)
Imaginary parts cancel iff there
£ = — Dgpi— Z 9} ginary p
k n are two thick wedges.
J
Bnin € R, Opi ER_— 1
With this definition the Gauss-Bonnet theorem holds: S, = — 2ziy

The beauty of Regge calculus: get boundary, corner and singular terms with much more ease.
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Lorentzian triangulations

Lorentzian triangle with A triangulation with A triangulation with RorTanmiBion-with
spacelike edges: violates regular light cone irregular light cone - “Elucﬁ dearll vertlices”
(Euclidean) triangle inequ. structure. structure. '
d b /TD\ k ik
— /? \trvlx [_3|..|-4
o~ b A \‘L\\}/L//f’f: " \Lﬁh\/a/ L / a ;i " \//xjfw fma\qu Cont
c ?CCL*'Q %"\\o?' - 2 Jb : \x B /
C b >2a T
JS) =0 J(S)=+2xn S=-2X2x
( if you declare appropriately (if you declare all (Exact result for 2D sphere.)
the corners as thick and thin) corners as thin)

e e i ligWt
O\ ) A

Euclidean region!
.' & \ HH wave-function.

In 4D: We have constructed a triangulation (with only spacelike lengths), which can have either regular or irregular causal structure.
Separated by region where (Lorentzian) triangle inequalities are violated.
Is this generic? (For triangulation with only spacelike edges: yes) "
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Topology change already there

R o Siph o
4 A P | IIIJ .II |

HI|— \\90[;5[ |I el EUC|1dean region! _“. [ [ '. //ﬂ._\}

i z"’:/ { | | .I |I ‘-._\ 1

| oy o Ly [

(i \‘.\ \ \J Jf L |\j

In a Lorentzian quantum- Regge path integral trousers (baby universes) are suppressed. “Yarmulkes’ are enhanced.
Requires the choice of the appropriate root for (-1). [Sorkin 2019]

You see the difference between real curvature and irregular caysal structures only in the Lorentzian geometry, keeping the /.
Topology change is already included if we decide to sum over all Lorentzian geometries allowed by the (Lorentzian) triangle inequalities.

We can decide to restrict to a causal regular structure or to allow for causal irregularities.
The restricting version would introduce a bit of non-loaclity.

Pirsa: 21010024 Page 17/33



Topology change already there

L,_r’ —w VLO /GJ‘:SCU{- P | A

/ 23 7( o I Co I.-’I -..II [ |I
\ h, & e i g Euclidean region! \ [ ] Va\
- w i lé | | Il \ i
| 3 / \ | ' '\ \4\| |
|‘ / s \ I"\. ,...)‘f ~ l'
| | - U

One can also build spin foam configuration with irregular causal structure.
Are there such imaginary terms in the asymptotics of (EPRL/FK) spin foams (and what happens with the sum over orientations)

Not obvious in the literature (I looked at). But it could be due to some implicit assumption of having a regular causal structure

Issue: Spin foam asymptotics gives Regge action with boundary or corner term for one simplex. Matching the type of corner term to the
type of angle, there will be no imaginary terms.

[Regge action of Barret, Foxon 1994 leaves out imaginary term, but there seem to be “imaginary action contribution” in the weights for the bones.]

Remark: For (EPRL/FK) spin foam models | expect it to be hard to put causality restriction
Much more straightforward in effective spin foam models.
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Lorentzian (really-) quantum gravity

There has been lots of work on (non-perturbative) Euclidean quantum gravity.
A number of approaches have ‘failed’ — but that is likely due to the Euclideanization and rather an ‘infra-red’ problem!

Introducing Lorentzian structures (e.g. CDT) can change the picture drastically.

Many open (quite basic) questions regarding Lorentzian configuration space and (quantum) path integral,
which are also highly relevant for spin foams:

* Properties of Lorentzian configuration space with and without regular causality? [Tate, Visser:
study in lower dimensions

x i i ? ikes?
* What are the non comp:ict dlrect'lorjs. Are: tht.ere spikes? ' aii Lorantia tbingls
* Can we deal with all the ‘infra-red’ divergencies in the quantum path integral? inequalities]
L3
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Topology change already there

e > {SL‘_[:’{_, =y, VLO /G.A:SCU{' r/_\_.ll I." 3 \II
A ! {1\ |
L('|— \\g“f&’[ |II e ) Eucladean region! _[ [ ] [ || /x’“}
O :/"’:/ II | | II| III, "-.\ |
| 2 II\ e a‘ i b el

| | \\_/ ) y \ )

In a Lorentzian quantum- Regge path integral trousers (baby universes) are suppressed. ‘“Yarmulkes’ are enhanced.
Requires the choice of the appropriate root for (-1). [Sorkin 2019]

You see the difference between real curvature and irregular causal structures only in the Lorentzian geometry, keeping the .
Topology change is already included if we decide to sum over all Lorentzian geometries allowed by the (Lorentzian) triangle inequalities.

We can decide to restrict to a causal regular structure or to allow for causal irregularities.
The restricting version would introduce a bit of non-loaclity.
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Lorentzian (really-) quantum gravity

There has been lots of work on (non-perturbative) Euclidean quantum gravity.
A number of approaches have ‘failed’ — but that is likely due to the Euclideanization and rather an ‘infra-red’ problem!

Introducing Lorentzian structures (e.g. CDT) can change the picture drastically.

Many open (quite basic) questions regarding Lorentzian configuration space and (quantum) path integral,
which are also highly relevant for spin foams:

* Properties of Lorentzian configuration space with and without regular causality? [Tate, Visser:

) . . ? oac? study in lower dimensions
* What are the non-compact directions? Are there spikes? i Lorentzaiitangle

* Can we deal with all the ‘infra-red’ divergencies in the quantum path integral? inequalities]
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Why spin foams!?

(A reformulation into a lattice gauge theory)

Inform your choices for the path integral by a rigorous notion of quantum geometry (aka quantization of geometry).
(Can be seen as a prescription for the UV properties.)

Deep connection to TQFT’s, among other things, allowing for a kinematical ‘flat’ vacuum / phase.

[BD, Geiller 2014, ...]
[Baez, BD, Freidel, Girelli, Smolin, ...]

Problem: It is very hard to rigorously quantize directly the Regge configuration space

— it has a very complicated boundaries due to triangle inequalities and positivity requirements.
(Similar problem for continuum metric.)

Solution: Reformulation of the theory using triads or tetrads and associated connection.

Manifestly (semi-) positive: &§ = € * €

(Only lower-dimensional) triangle inequalities implemented with Gauss-constraint / local rotation symmetry.

Works wonderfully for (2+1)D gravity. (Chern-Simons, BF, Ponzano-regge, Turaev-Viro, ...)

A price to pay: But adds sum over orientations, degenerate sector, even Lorentzian geometries in Euclidean signature

and vice versa. [Barret, Foxon 1994]

An even bigger enlargement of the configuration space in (3+1)D!
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(3+1)D quantum geometries

g=e-e Hodge dualization E¢ su(2) algebra valued: components are non-commutative!

Give the normals to 2D surfaces (e.g. the triangles).
Simplicity constraints: ensure that these normals are arising from n=¢ Xe.

But spatial geometry is non-commutative, leading to an anomaly in the constraint algebra.

- Part of the simplicity constraints are not implemented on the LQG Hilbert space.

mml>- The LQG Hilbert space describes generalized geometries, which include a certain type of torsion. [BD, Ryan 2008+ ; Freidel, Speziale 2010,
Asante, BD, Girelli, Riello, Tsimiklis 2019 ]

But to get a suitable (non-flat) dynamics, we have to implement the constraints in some form into the path integral.
2007: EPRL [Engle, Pereira, Rovelli, Livine], FK [Freidel, Krasnov], [Livine-Speziale]

Weak implementation of (primary) simplicity constraints for fluxes
==l Coherent state/ wRak implementation in the path integral. <

2020: Effective spin foams [Asante, BD, Haggard 2020]: weak implementation
of secondary simplicity constraints for gauge invariant variables,
based on Area-Angle Regge action [BD, Speziale 2008]
Much greater numerical accessibility

Remark: [Magueijo, Zlosnik 2020] argue that including a coherent state average of (a certain type of) torsion makes the Kodama state normalizable.
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Effective spin foam models

Effective spin foam model amplitude:
Regge action in terms of areas + constraints(3D angles, areas) ; + peaked on area constraints
l ) » exp(;S(AJ) X Gaussian y€:
exp(iS(A)) coherent states in angle variables integrate out Area
h angles Barbero-lmmirzi parameter
parametrizes the anomaly
and thus minimal uncertainty

in the constraints

. with spread 6* =

Amplitude given by Oscillating factor and Gaussian.

* For such systems with weakly implemented constraints we need to adjust the notion of semi-classical regime.
[Asante, BD, Haggard 2020]: : . ; p A
« i = 0O is not sufficient. We need also to demand that the anomaly y is sufficiently small (scaled with #).

Gaussian and oscillating factor
(Naive) Estimate for spin foams:

Oscillations can wash out the Gaussian.

Condition for reproducing critical value: \/TY
-V Ae SJ o1

Hoscillation over deviation interval < (1)

Confirmed by numerical simulations for simplest case with

curvature.
But more involved behaviour for more complicated triangulations.

v [action]]/\/ A < O(1
[ [ ]] \/_ = ( ) [Asante, BD, Haggard 2020]

Scaling in fi:

G, exp(iAS)

To get equations of motions we need small #i — highly oscillating amplitude. But this threatens to wash out the constraints.

Is there a semi-classical regime which reproduces the equations of motion of Regge calculus?

Page 24/33
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Effective spin foam models: numerical results

[Asante, BD, Haggard 2020.04 and 2020.1 | and to appear]
Triangulation with one bulk area: testing implementation of constraints (but not equation of motion)

» for Euclidean geometry and Lorentzian geometry (with spacelike tetrahedra, causally regular sector): some features are qualitatively the same

* quantum geometry: area spectra are discrete (another way to see that area constraints cannot be imposed sharply: Diophantine equations)

A=ylanfiG+1) ~ ylij ety S~yje,t o2~

Path integral is actually a sum over discrete area values (spins).
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Effective spin foam models: numerical results

Triangulation with one bulk area: testing implementation of constraints (but not equation of motion)

k
e Lorentzian, e = 0.67, _;;1‘;,,;‘ = 2600, These maxima arise from pseudo stationary points, due to the discrete sum:
1
Abs(2) Need sufficiently large curvature angle ig 1.0 m“““"w --...”””” 10 N -
20 to see this structure. A(e), G ;
Maxima at: ey =2z X N 05

4]

=0.

A |!|! I i 1360 1380 1400 1420" 1440 jb "
. . u
-05 e ' o > .
T W o TR
y 1.0

But these maxima are well outside the semi-classical regime.

Pirsa: 21010024 Page 26/33



Effective spin foam models: numerical results

Triangulation with one bulk area: testing implementation of constraints (but not equation of motion)

« Lorentzian, € = 0.67, j; = 2600,

These maxima arise from pseudo stationary points, due to the discrete sum:

. 1.0 m 2
Abs(Z) Need sufficiently large curvature angle arg m““luu I|I|”|”” - )
20 to see this structure. @(eﬂ ), G -
Maxima at: ey =2z X N 05 o
{1 ’
R B e 1420° py i
i 00 ) 350 1380 1400 420 1440 Jb:dk
-0.5 ™
-0.5 »
10 ' -
1.0
10 20 30 40 y
But these maxima are well outside the semi-classical regime.
* Deficit angle goes to vanishing
Uputi) 1o ‘ Upuai) 10 © value for larger gamma.
jclass l'l r | . jclass Semi- | .‘ J\ (For the Euclidean case this is a
108 I r P o o g .o classical [\/\—/‘V_ 05 smoother process.)
4 i .é;ﬁt boom i regime

1.00 i A E S WULE

n : Vi B \’lj\'\f \l

; u\f\q€ U - ' 0.8 0 0 15 2.0 }/

095} ! J . 1

. f . : E o

s :
090 - : 0.7 J -0.5 ‘

10 20 30 40 y 05 1.0 1.5 20 y
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Effective spin foam models: numerical results

« Euclidean, € = 1.23, j{' = 1400,

» Euclidean, € = 1.23, j¢'a = 1400,

Absz) Yo |
‘ Toulk Area value for
d f . flat configuration.
. i :class __
« Euclidean, € = 0.74, jflass = 150, . B e
Abs(z) \ —(J.rf,zf“-“‘ ;ll \ i
bulk s ke g
1 5l T —— T
s | Vit
|] f [ ﬂ\ f 1.06 ;‘f// ' ‘; | I
4 \/\\‘Jnf\ 1\ [\ \ j \ f b
N1 oy i
S Ly )
10 15 20 ./ ;"‘
1 2 3 4 5
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Effective spin foam models: numerical results

Triangulation with bulk edge: testing the equation of motion: need minimal gamma [Asante, BD, Haggard: 2020.11]

Very large curvature €1(tso1) = 4.193, ea(tsol) = —1.790, €3(tso1) = —1.1432

5000

2]

4000 Not clear yet:

characterization of maxima
(Pseudo-stationarity in three directions)

|
-
I
LR V]

3000

Itis NOT ¢y =2z X N.

2000

1000

Semiclassical regime:
Green scale forces gamma to be
quite small: gamma<0.15.
For smaller (red, blue) scales:
gamma<0.3

R'C(Al)fAlsol
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Effective spin foam models: numerical results

Reproduce classical solutions for a regime specified by:
Determines
* the area values of classical solutions — here determined by boundary data ~—— “lattice constant”.

Should be
* curvature (per building block) of classical solution — here determined by boundary data —___, a01ai50

3 classically.
Determines

¢ the Barbero-lmmirzi parameter ——
spectral gap.

k

Allowed range for y gets larger for smaller curvature angles.
For refinement limit we have smaller and smaller curvature angles.

Indication: Semi-classical regime gets ‘larger’ for triangulations with more building blocks (with small curvature).

Crucial question for continuum limit: How does weak constraint implementation interact with coarse graining?
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Summary and Outlook

Lorentzian quantum geometry and quantum gravity
» A priori include configurations with irregular light cone structure — but exponentially suppressed
* Could help in reaching a continuum limit where smooth manifolds arise

* Could avoid longstanding problem of (infra-red) divergences, particular appearing in Euclidean models
* Lots of open issues: non-compact directions in configuration space and spikes, sum over orientation, ...

Effective spin foams:
* Numerical computations are several magnitudes more efficient than for other models.

* Can test some long standing open issues: sum over orientations, including degenerate geometries,
topology change, ...

* Weak implementation of constraints challenges existence of semi-classical regime.
* But could identify a semi-classical regime for all examples considered so far.

* Selection principle for various (measure) choices: consistent coarse graining flow.
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(3+1)D quantum geometries

g=e-e Hodge dualization E su(2) algebra valued: components are non-commutative!

Give the normals to 2D surfaces (e.g. the triangles).
Simplicity constraints: ensure that these normals are arising from n=¢ Xe.

But spatial geometry is non-commutative, leading to an anomaly in the constraint algebra.

el Part of the simplicity constraints are not implemented on the LQG Hilbert space.

=l The LQG Hilbert space describes generalized geometries, which include a certain type of torsion. [BD, Ryan 2008+ ; Freidel, Speziale 2010,
Asante, BD, Girelli, Riello, Tsimiklis 2019 ]

But to get a suitable (non-flat) dynamics, we have to implement the constraints in some form into the path integral.
2007: EPRL [Engle, Pereira, Rovelli, Livine], FK [Freidel, Krasnov], [Livine-Speziale]

Weak implementation of (primary) simplicity constraints for fluxes
=l Coherent state/ weak implementation in the path integral. <

2020: Effective spin foams [Asante, BD, Haggard 2020]: weak implementation
of secondary simplicity constraints for gauge invariant variables,
based on Area-Angle Regge action [BD, Speziale 2008]
Much greater numerical accessibility

Remark: [Magueijo, Zlosnik 2020] argue that including a coherent state average of (a certain type of) torsion makes the Kodama state normalizable.
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Topology change already there

. Jor-r =y e /GJ‘:SCU{- T &
O b () Cont SN
,‘ NG | "=~ - < .2\ Euclidean region!
| QL

g A e '_““ llf | [ ll &

One can also build spin foam configuration with irregular causal structure.
Are there such imaginary terms in the asymptotics of (EPRL/FK) spin foams (and what happens with the sum over orientations)?

Not obvious in the literature (I looked at). But it could be due to some implicit assumption of having a regular causal structure.

Issue: Spin foam asymptotics gives Regge action with boundary or corner term for one simplex. Matching the type of corner term to the
type of angle, there will be no imaginary terms.

[Regge action of Barret, Foxon 1994 leaves out imaginary term, but there seem to be “imaginary action contribution” in the weights for the bones.]

Remark: For (EPRL/FK) spin foam models | expect it to be hard to put causality restriction.
Much more straightforward in effective spin foam models.
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