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Abstract: A central challenge in quantum many-body physics is a characterization of properties of “natural’ quantum states, such as the ground states
and Gibbs states of alocal hamiltonian. The area-law conjecture, which postulates a remarkably simple structure of entanglement in gapped ground
states, has resisted a resolution based on information-theoretic methods. We discuss how the right set of insights may come, quite unexpectedly,
from polynomial approximations to boolean functions. Towards this, we describe a 2D sub-volume law for frustration-free locally-gapped ground
states and highlight a pathway that could lead to an area law. Similar polynomia approximations have consequences for entanglement in Gibbs
states and lead to the first provably linear time agorithm to simulate Gibbs states in 1D. Next, we consider the task of learning a Hamiltonian from a
Gibbs state, where many-body entanglement obstructs rigorous algorithms. Here, we find that the effects of entanglement can again be controlled
using tools from computer& nbsp;science, namely, strong convexity and sufficient stati stics.& nbsp;
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Complexity & entanglement in many-body systems
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Outline of the talk

anurag anshu

e Progress on several questions in quantum many-body physics:

® Area law in two dimensional gapped ground states.

® Near-linear time rigorous algorithm for one-dimensional Gibbs
states.

® | earnability of Gibbs state.

® (Central theme: polynomial approximations and strong
convexity reveal surprising properties of many-body systems,
not captured by prior methods.

® Application: quantum computing & simulation of many-body
physics, verification of quantum devices.
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Many-body systems
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Physical quantum states

anurag anshu |

® Ground states: lowest energy states of the hamiltonian.

® Gibbs state: describes the state of the system in contact with
a heat bath at some temperature.

e Question: can these states be simulated via an efficient
algorithm on a classical computer?
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Quantum entanglement
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Classical

Entanglement is typically associated with complexity
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A different notion of complexity .

anurag anshu

Polynomial approximations to the ground state and Gibbs
state, as functions of the hamiltonian.

Example: Taylor expansion of e=”H up to certain degree to
obtain p(H) = ag + aiH + ... agH?.

More generally, multi-variate polynomials that look like

ahyoh3a...m3+ ...+ chsghzg ... ho 3.

A recent picture : the smallest degree of a polynomial
approximation as a new notion of complexity.
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The talk so far...

Entanglement is viewed as a measure of complexity.

Less entanglement intuitively suggests efficient algorithms for
the corresponding state.

We can look at the polynomial degree as a different notion of
complexity.

Up next: area laws and the power of low degree polynomial
approximations.
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1D entanglement structure: area law

anurag anshu

® Area law: entanglement (measured as entropy) between the
two parts scales as the size of the partition (a constant).

10 /32
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1D entanglement structure: area law
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® Area law: entanglement (measured as entropy) between the
two parts scales as the size of the partition (a constant).

® Hastings [J. Stat. Mech, 2008]: holds for 1D gapped ground
states.

® |ntroduced information theoretic tools.
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Simulating quantum many-body system on a quantum
computer

anurag anshu

® Following Feynman [IJTP 1982], a programmable quantum
system can be used to prepare the ground state or Gibbs state

of any system.
e Given this, properties can be predicted via measurements.

Measure

m— | Properties
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1D entanglement structure: area law and classical
algorithm

® Arad, Kitaev, Landau, Vazirani [2013] showed the best known
1D area law.

® |ntroduced the notion of Chebyshev-based polynomial
approximation to ground states. Established connection
between polynomial degree and entanglement.

® First provably efficient algorithm for 1D ground states
(Landau, Vidick, Vazirani [Nature Physics, 2015]).

11/32
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Chebyshev-based polynomial approximation

anurag anshu
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Chebyshev-based polynomial approximation
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Area law conjecture in two dimensions
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Area law conjecture in two dimensions

anurag anshu \

e Area law for ground states on two-dimensional lattice is not
known.

® Chebyshev polynomial approximations to ground states do not
seem to suffice.

14 /32
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Entanglement structure in two dimensions
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Sub-volume law

Theorem (A., Arad, Gosset, STOC 2020)

Frustration-free 2D ground states' satisfy a sub-volume law of
|DA|%/3.

lwith constant local spectral gap.
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Entanglement structure in two dimensions
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Area law

A., Arad, Gosset (Work in progress): Frustration-free 2D ground
states? satisfy an area law with entanglement scaling as |9A[1 oM.

2with constant local spectral gap.
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New tools

® RG flow-type polynomial approximation: a framework to map
polynomial approximations at smaller scales to polynomial

approximations at larger scale.
® Robust polynomial method: a key constituent of the RG-flow

argument.
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New tools

® RG flow-type polynomial approximation: a framework to map
polynomial approximations at smaller scales to polynomial
approximations at larger scale.

® Robust polynomial method: a key constituent of the RG-flow

argument.

"

00 89 80 0000 00
e 08800008080
L B B B BN BN BN B BN BN N

® Locality at the boundary: crucial use ogthe local structure of
the hamiltonian at the boundary.
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The polynomial approximation picture

anurag anshu

Chebyshev-based polynomials are optimal at constant error.
But this not true when error is tiny, such as, e—total eneray,

In the classical case, best degree polynomial approximations

for tiny errors is well known (Kahn, Linial, Samorodnitsy
[Comb. 1993], Buhrman, Cleve, de Wolf, Zalka [FOCS 1999]).

Area law follows if the same can be reproduced for the ground
states:

Complexity of 2D ground states = Complexity in the classical case

as measured by the polynomial degree.

O,
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Future directions for ground state entanglement

anurag anshu

® How far can the tiny error polynomial approximations be
pushed? Would they possibly lead to a 2D area law for
frustrated systems?

® New tools to remove the local gap assumption (which would
generalize to the frustrated case).

e |f 2D area law for frustration-free systems holds, can the
ground state be represented as a PEPS?

® Would the resulting tools suffice to construct new heuristic
classical algorithms for such ground states?

19 /32
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Near-linear time algorithm for 1D Gibbs states

e Several heuristic algorithms achieve near linear time

algorithms for 1D Gibbs states at low temperatures (iTEBD,
METTS; Orus [A. Phys, 2014])

® But no rigorous proof of the run-time of the algorithms.

Theorem (Kuwahara, Alhambra, A., PRX 2021)

For a 1D Gibbs state on n particles at inverse temperature
B = o(log n), there is a classical algorithm that runs in time n'*e®
and outputs an MPO approximation of the state.

20/32
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Near-linear time algorithm for 1D Gibbs states
® Key tool: polynomial approximation to the function e=/7*.
® Truncated Taylor series is known since 1715 AD. So what's

new?’

e Chebyshev-based approximations that improve upon Taylor
series (Sachdeva, Vishnoi [FTCS, 2014]).

Theorem (Kuwahara, Alhambra, A., PRX 2021)

Gibbs states on a lattice satisfy an area law of O(/3%/3)|0A|.

® Improves upon the prior area law O(%)WA\ (Wolf, Verstraete,
Hastings, Cirac [PRL, 2008]). )

e Suggests that entanglement in imaginary time evolution
spreads as O(3%/3), instead of O(/3).

21/32
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The talk so far...

anurag anshu \

® Polynomial approximations to the ground state are leading to
powerful insights into the entanglement structure of the
ground states, not accessible by information theoretic tools.

e Polynomial approximations to the Gibbs states have similar
consequences, along with efficient algorithms for their
simulation.

e Up next: learnability of Gibbs states.

23/32
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Learning interactions from the Gibbs state

anurag anshu

e A system or device prepares a Gibbs state based on some
interactions, which are not known to us.

® |magine that the system or device can prepare several
independent samples of the Gibbs state.

® Goal: learn the interactions by quantum measurements, with
as few samples as possible.

24 /32
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Learning interactions from the Gibbs state: relevance

anurag anshu

® |nherent in the method of physics itself: interactions need to
be discovered and samples are naturally Gibbs states.

® A good learning algorithm ensures verification of quantum
devices. Gibbs states are crucially used in recent quantum

algorithms (SDP solvers, Brandao, Svore [FOCS 2017]).

® A central problem for quantum learning theory (Amin et. al.
[PRX 2018]). Several heuristic results that work very well in
practice (Wiebe et. al. [PRL 2014]; Bairey, Arad, Lindner
[PRL 2019])

25 /32
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Why Gibbs states should be learnable?

anurag anshu

® Gibbs states on lattices have a simple entanglement structure
and have low degree polynomial approximation.

® Thus, their complexity is low in both notions discussed here.

e |earning family of states with low complexity is expected.

26 /32
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The bottleneck for rigorous algorithms

anurag anshu

e Entanglement can completely delocalise the information about
each interaction.

® The quantum Gibbs states violate the Markov condition.

27 /32
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Learning interactions from the Gibbs state: results

Theorem (A., Arunachalam, Kuwahara, Solemanifar, FOCS
2020)

The hamiltonian can be learned with good accuracy, with number
of samples polynomial in the number of particles.

® The algorithm is time efficient at high temperatures and for
sign-free hamiltonians.
® The sample complexity is tight up to polynomial factors.

® |ntuition: information about the interactions, however
delocalized by entanglement, can be accessed via simple
quantum measurement.

® Technical core: strong convexity of the quantum partition
function.

28/32
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Future directions in learnability

anurag anshu

¢ |s time-efficient hamiltonian learning possible at all
temperatures?

e Can a hamiltonian be learned from Gibbs states over arbitrary
interaction hypergraphs?

® | earning theory for other quantum many-body states of low
complexity?

29/32
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Outlook

anurag anshu

® There are notions natural to both physics and computer
science: time efficiency, randomness (Glauber dynamics),
non-locality, etc.

¢ We highlighted some notions that are inherent to computer
science: efficiency in terms of polynomial approximations, the
concept of strong convexity; and effective in many-body
physics.

e As observed by E®Wigner in “The Unreasonable Effectiveness
of Mathematics in the Natural Sciences”, such connection
between fields require a deeper understanding, or a legendary
essay.

30,32
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Outlook

anurag anshu
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® Going back in history, these concepts originated from the
physical world.

® Chebyshev was “comparing different mechanisms of motion
transfer, especially in a steam engine” (Goncharov [J. Approx.
Theory, 2000]).

® Are we coming full circle, or spiralling into a deeper
connection?
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Thank you for your attention!
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