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Abstract: Recent years new concepts of symmetries have been developed such as higher form symmetries, and categorical symmetries. The higher
form symmetries can be either explicit in a Hamiltonian, or inexplicit as a dual of an ordinary symmetry. The behavior of higher form symmetries
are easy to evaluate in phases with gaps. But at quantum criticalities their behaviors are more nontrivial. We evaluate the behaviors of higher form
symmetries (either explicit or inexplicit) at various quantum critical points, and demonstrate that for many quantum critical points a universal
logarithmic contribution arises, which is analogous to the quantum entanglement entropy. This logarithmic contribution is related to the universal
conductance at the quantum critical points, and in some cases can be computed exactly using duality between CFTs developed in last few years. We
also evaluate the behavior of categorical symmetries for more exotic cases with subsystem symmetries.
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Content:

1, Review of higher form symmetry and Categorical symmetry;

2, Universal features of 1-form ODO at a class of quantum critical
points;

3, ODO with subsystem categorical symmetries;

4, quick comment on the relation between EE and ODO

Reference: arXiv:2012.03976, + arXiv:2101:xxxxx
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Higher Form Symmetries at Quantum Criticality

Cenke Xu

Generalized Symmetries:

1, I-form symmetries (Nussinov et.al. 2009, Aharony, et.al. 2013
and many many others)

Symmetry is always associated with conservation. An ordinary
global symmetry charge in d-dim space, is the total charge in the
entire system, for example the total particle number in the space for
a system with U(1) symmetry. / 457

Consider U(1) symmetry charge
localized in a d-dim subsystem V with
boundary, the symmetry charges
within V can only change through
symmetry current flowing across
boundary of V:
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Generalized Symmetries:

1, I-form symmetries (Nussinov et.al. 2009, Aharony, et.al. 2013
and many many others)

I-form symmetry charge is a vector (flux) penetrating a (d-1)-dim
subsystem. For a closed (d-1)-dim subsystem without boundary, the
flux 1s conserved; for a (d-1)-dim subsystem with (d-2)-dim
boundary, the flux through the subsystem changes through 2-form
currents flowing across the boundary.

Q

3d space :
2d subsystem /= Juv

Cenke Xu
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Generalized Symmetries:

1, I-form symmetries (Nussinov et.al. 2009, Aharony, et.al. 2013
and many many others)

Example: U(1) gauge theory with only even electric charges

V-6=2n

Either zero or even electric fluxes through a closed surface, flux
conserved mod 2. Still a Z,(!) 1-form symmetry:

2d space

Cenke Xu
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Generalized Symmetries:

2, Categorical symmetry (Ji, Wen 2019): treat explicit symmetry and
dual inexplicit symmetry on equal footing:

Well-known dualities, example 1:

J 3

This inequity is remedied in the following ways:

1, we realize the two phases of the Ising model as the e-boundary
and m-boundary of the 2d toric code, then neither phase has ground
state degeneracy;

2, we consider a subset of the Hilbert space: only the symmetric
subspace of the Z,, for example we only consider the “cat state” in

the Ising ordered phase
ICat}y ~ [ 11t} + [+ 1)

Cenke Xu
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Generalized Symmetries:

Well-known dualities, example 2:

H= Y -Kdlol - ho, o

<x,x'>

x
: E ‘ -1 E:I% 3 .3 _3 3
LI.{J K I%,f Tk & "%, 'x+3.0 " 'x+5,2"
x

X, i
The 2d quantum Ising model is dual to a quantum Ising gauge theory.

The electric flux of the dual 1-form symmetry is the Ising domain
wall of the original Ising model.

Again, the phase with # >> K, where the dual inexplicit Z,'") 1-form
symmetry is supposed to be spontaneously broken, has no degeneracy.
The Ising symmetry and dual 1-form symmetry are not on equal
footing.
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Q1: what is the correct language/quantity to characterize both the
explicit symmetry and inexplict dual symmetry of these models?

Usual concepts and phenomena: order parameter, ground state
degeneracy due to SSB, etc.

In order to describe physics of both the explicit and inexplict dual
symmetry, we need to give up the ground state degeneracy, and the
order parameter. But we can still use the generalized version of the
concepts of “short range” or “long range” correlation.

Order diagnosis operator (ODO) for each symmetry: the expectation
value of ODO associated with each symmetry characterizes whether
the system preserves the symmetry, or have SSB.

(Patch operator in arXiv:1912.13492)
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Basic example 1: ODO for Z, and dual Z, symmetries of the 1d
quantum Ising model

7
3

- 3 3 W N o O
H é haJo’J- -1 fm'j «+ Hy;= E K T fn_f LTRP
J j

_ 3.3 - TN 1
()r.J = 0; CTJ. OI,\\J,E =5 = T

i< k<]
The ODOs reduce to ordinary correlation functions in this simple
example, and the expectation values of the ODOs characterize
whether the state preserves the symmetry, or has SSB.

Q2: How do ODOs behave at quantum critical points?

At the critical point K = h, both ODOs have power-law expectation
values, or else we can say both symmetries are preserved.

Cenke Xu
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Basic example 2: ODO for Z, and dual Z,(!) 1-form symmetries of the
2d quantum Ising model

H= )Y -Kdio} - hol o

<x,xX'>

Ij.!f Z K T:'l.;'i Z h"'—):':..r' T):':..rrT):_:+ T,y T):'f"‘lr
X.ft x

In the two fully gapped phases, ODO can be computed perturbatively,

perturbation protected by the gap. Q2: But what about at the quantum

critical point? Are both symmetries preserved, or spontaneously

broken? We need to evaluate the ODOs at the critical points.

Analytical evaluation of ODOs at QCPs can be difficult;

Numerics shows a perimeter law, plus a corner-induced logarithmic
term (arXiv:2011.12543, Zhao,et.al.), reminiscent of entanglement
entropy (Swingle 2009, Bueno, et.al.2015, Faulkner, et.al. 2016).
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Universal features of 1-form ODO at a class of QCPs;

One can show that for a class of a quantum critical points with 1-
form symmetries (either explicit or inexplict), the 1-form ODO
receives a universal (UV-independent) subleading logarithmic
contribution from sharp corners.

—((log Oc 2y = 2= (1 - f'(ﬂ)logf’) +0(1)

’\'.3
£(0) = 201+ (x — 8) cot(9))

Here the 1-form symmetry is the dual
inexplicit Z(" 1-form symmetry of a
Z symmetry; for a class of quantum
critical points, Z,; will enlarge to
U(1) in the IR; o is proportional to
the universal conductivity.

Cenke Xu
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Universal features of 1-form ODO at a class of QCPs;

One can show that for a class of a quantum critical points with 1-
form symmetries (either explicit or inexplict), the 1-form ODO
receives a universal (UV-independent) subleading logarithmic
contribution from sharp corners.

—((log Oc 2y = 2= (1 - f'(ﬁ)logf’) +0(1)

’\'.3
£0) = 201+ (x — 8) cot(9))

Example 1: 0-form Z, order-disorder transition: when N >=4, it is just
a (2+1)d XY ftransition with irrelevant anisotropy.

S = /dfm,— 0B +7|®|* + g|®|" + u(@" + he) o

[
I

] dzdr (0 —ia)d> + 7@ + glél* + uMY + he).
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Universal features of 1-form ODO at a class of QCPs;

One can show that for a class of a quantum critical points with 1-
form symmetries (either explicit or inexplict), the 1-form ODO
receives a universal (UV-independent) subleading logarithmic
contribution from sharp corners.

—((log Oc 2y = 2= (1 - f'(ﬂ)logf’) +0(1)

’\'.3
£0) =201+ (x — 8) cot(9))

Example 1: 0-form Z, order-disorder transition: when N >=4, it is just
a (2+1)d XY transition with irrelevant anisotropy.

S = /dfm,— 08| +7|®|* + g|®|* + u(@" + he) o

©
I

] d*zdr (0 —ia)d> + 7@ + glél* + u(MY + he).
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Universal features of 1-form ODO at a class of QCPs;

Example 1: 0-form Z, order-disorder transition: when N >=4 it is
just a (2+1)d XY transition with irrelevant anisotropy.

s 2'J'T . 1
O¢ = exp (LT Z re.lj) J = o * da

JEA 4T

{log Oc)*) =~

[} 4

The gauge field correlation is completely dictated by the current-
current correlation:

L r .
— j di* / dli' {a, (x)a,(x")).
N2 Je Je

Current-current correlation is proportional . I, (x)
to the universal conductivity of the XY ' x|
transition (studied extensively)
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Universal features of 1-form ODO at a class of QCPs;

Example 1: 0-form Z, order-disorder transition: when N >=4 it is
just a (2+1)d XY transition with irrelevant anisotropy.

— ,2'J'T " 1
O¢ = exp ( o Z u_j) J = 5% da

JEA 27

((log Oc)?) = —

L r .
— j di* / dli' {a, (x)a,(x")).
N2 Je Je

i

Comment 1: current has a fixed scaling dimension at any CFT.

Comment 2: careful integral requires UV regularization when x and
x’ are close. To keep gauge invariance, we keep C and C’ separated
slightly along the temporal direction;

Comment 3: —{(log Oc)?). is the second order expansion of 2(Oc)

Cenke Xu
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Example 2: “QED y; v, ) theory”, with various applications.

. Ny -
S = / d*xdr Z '!,_’,,"I." (@ —iNaWW, + my + _ll—’;uda + e
=1
s
Application 1: QED,; , ¢, the O-form SPT-trivial transition; the
result in previous example applies with a different o.

Application 2: QED; ,y o). can be realized at the 2d boundary of a
3d SPT phase with Z 'V and U(1) symmetry (conservation of gauge
flux). Using the fermion-vortex duality (Son 2015, and others)

QED(y 2n0) ¢ aN

Jy =i % da,
oy

Yy - dy coupled to Zn gauge theory + -- -

1 L(x)

CE

= =5 1 TP
(o (0) Ty, (x)) —({(log Oc)") = N (T - f(6) l(;g[’)

Cenke Xu
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Example 2: “QED y; v, ) theory”, with various applications.

Ny

S = / d*xdr Z 'i,_’,,"l." (@ —iNaW, + my +

a=1

ik
ada + - - -
4n

Application 3: QED vy y. g2, can be realized in 2d, and it is a
topological transition between topological orders.

q is at order of N; Then with large N the gauge field correlation is

8 1
NyN? 72 x|

(cr.)s Kb, — (1, (x) sinKin e,”,,,.;:ﬂ)

(a,(0)a, (x)) =

| K| x| K| 2 |x]

\ 8NN, 7P '
—_ l ‘()a"’ — e _ = ()' l'l)‘f"
(log Oc)") 64k + ,TEJ\'l_:'\'j ( € @) log )
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Universal features of 1-form ODO at a class of QCPs;

Example 1: 0-form Z, order-disorder transition: when N >=4 it is
just a (2+1)d XY transition with irrelevant anisotropy.

= . 2m X i
Vo= exp (lT Z ”‘J) J = 5 da

Jj€A <

{log O¢)?) = — 1 j (H“/ dl' {a, (x)a,(x")).
N2 Je Je

Comment 1: current has a fixed scaling dimension at any CFT.

Comment 2: careful integral requires UV regularization when x and
x’ are close. To keep gauge invariance, we keep C and C’ separated
slightly along the temporal direction;

Comment 3: —{(log Oc)?). is the second order expansion of 2(Oc)
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Example 2: “QED y; v, ) theory”, with various applications.
i Ny ik
S = / d*xdr Z -'t,_?,.,'j.-' (@ —iNaWWy + my + _%rm'a 4o

m
a=1

Application 3: QED y; y. g2 can be realized in 2d, and it is a
topological transition between topological orders.

q is at order of N; Then with large N the gauge field correlation is

8 1
NyN? 72 x|

(("()&; Kb, — (L, (x)  sinKir e,”,,,.gr,)

(a,(0)a, (x)) =

| K| x| K| 2 [|x]

" 8NNy P '
Ao O-PY= 2" "' [2Z _ r9)log P
((log Oc ) MHHEJ\._{:\.},( — — f(6)log )

e

Cenke Xu
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ODO with subsystem categorical symmetries

In previous examples, ODOs reduce to either ordinary correlation
functions or Wilson loops. But for systems with “special”
symmetries, ODOs and their behavior can be much richer.

Example: a 2d quantum Z, gauge theory with extra subsystem
symmetries (Xu, Fu, 2009):

J’r:rl 1

; T
X4V X+T,0 x+y.aa X, IV x+T,3 Xy x+1,8

H = E Ix'n;:‘irr"{ r-{o':{ s a0 — Jol io
x

This model has a series of subsystem conserved quantities such as

Y. = 3 V. = 3
=y T H Ox i Six = H Ux.,r_';'

y=Const z=Const

Cenke Xu
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ODO with subsystem categorical symmetries

In previous examples, ODOs reduce to either ordinary correlation
functions or Wilson loops. But for systems with “special”
symmetries, ODOs and their behavior can be much richer.

Example: a 2d quantum Z, gauge theory with extra subsystem
symmetries (Xu, Fu, 2009):

J’o’l 1

. T
X 47 X+T,4" X+ x. " x+a,d v x, g x40

H = E 1\':7;:‘,(73 r-{o':{ s alisas = Jol i0
x

This model has a series of subsystem conserved quantities such as

T e 3 S, e 3
iy = || Oxi: Zja = ” Ox.ij

y=Const T=Const

Cenke Xu
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ODO with subsystem categorical symmetries

In previous examples, ODOs reduce to either ordinary correlation
functions or Wilson loops. But for systems with “special”
symmetries, ODOs and their behavior can be much richer.

Example: a 2d quantum Z, gauge theory with extra subsystem
symmetries (Xu, Fu, 2009):

_2 : ] 3 3 3 1 1 1 1
H= m ax,a ‘Tx\r'.rgx . .i-,,}"’x + 1. ']‘Tx__i-ﬂx gk o ‘[’Tx.a}dx AT
x

Because of these subsystem conserved
quantities, in the large K phase where the
1-form symmetry is “SSB”, the ODO
(Wilson loop) decays as a “corner law”

1) : (1) — $Y2 N
05’ =[]af, (0p') ~esWIK Ne,
le(

Cenke Xu
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ODO with subsystem categorical symmetries

In previous examples, ODOs reduce to either ordinary correlation
functions or Wilson loops. But for systems with “special”
symmetries, ODOs and their behavior can be much richer.

Example: a 2d quantum Z, gauge theory with extra subsystem
symmetries (Xu, Fu, 2009):

_ j : - 3 3 3 3 1 1 1 1
H = K ﬂx,a ‘Tx\r'.rgx + .i-.i,a"’x + 1. ']nx..i-ﬂx +&,3 ‘[Jx.udx .4
x

This model is dual to a Ising plaquette model, which also has
subsystem symmetries.

: ik
x'x+z x4+ ' x+z+y-

!L;:Z Krg —2J1372, .72
%

]

Asub) __ 3 .3 3 _:
07y = 70,072,070,y 7z.y"

Cenke Xu
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ODO with subsystem categorical symmetries

In previous examples, ODOs reduce to either ordinary correlation
functions or Wilson loops. But for systems with “special”
symmetries, ODOs and their behavior can be much richer.

Example: a 2d quantum Z, gauge theory with extra subsystem
symmetries (Xu, Fu, 2009):

_ j : - 3 3 3 3 1 1 1 1
H = K ﬂx,a ‘Tx\r'.rgx + .i-.i,a"’x + 1. ']nx..i-ﬂx +&,3 ‘[Jx.udx .4
x

This model is dual to a Ising plaquette model, which also has
subsystem symmetries. A

o
x'x+z ' x+y ' x+tz+y-

Hy=> -Kr}-2Jrrd 18,73
x

]

A(sub) _ = Tt M (g
O = 70,072,070,y Tz.y"
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ODO with subsystem categorical symmetries

Both the special Z2 gauge theory, and the dual plaquette Ising
model can be embedded into a special U(1) gauge theory and a dual
U(1) model with subsystem symmetries.

H = /dz,i' {—)[\:' x @)? + il ({V_T(l-)z ¢ {V;‘,fﬁujg)

S, = I/Id‘rd"],i‘ %LEL—U]E | %(V_,-V‘,O}"'.
The dual U(1) theory is analogous to the bose-metal model
proposed before (Paramekanti, et.al. 2002), with subsystem
symmetry.

Cenke Xu
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ODO with subsystem categorical symmetries

Both the special Z2 gauge theory, and the dual plaquette Ising
model can be embedded into a special U(1) gauge theory and a dual
U(1) model with subsystem symmetries.

H= /df,.- {_)(\: x @) + 51 (V22)? + (Vyéy)?)

S; = /d‘rd"’.i‘ %LEJTUJE | _-i-(v_,-v‘,f)}"'.

The ODOs can be evaluated at the Gaussian phase of both theories.
The leading order of the ODO is different from the gapped phases.

Special 2d Z5 Gauge theory Eq. 17| K = J Ko< J Gapless Phase
O;!U Corner law| Area law |exp ( &ﬂ'z\ff-f["' log |z|log | ;,r|) for rect. C
f);‘_‘; Area law |Long range exp ( ér?\ /Ut log|z|log |y|)
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3d systems with 1-form and sub-system symmetries:

_ '\ g3 3 3 3 I P R |
H = § ; h”x.ﬁ“x.:‘-”x-.ui._:‘ﬂxA-r'f-.;i ng-.ﬂiﬂx'* i fi
X, 4,0
-1 : 5
A ff,; = Z _I\‘x;}. - Z -_!785(_;“}[}2_._;;__,'”;.
X, i, 1 p L, @
SO . T 3
bx.;w e ‘i,_;}'r)‘(.l:‘TAX+jj“r’r)v‘.+J’-|r.i'

With a modified Hamiltonian of the Z, gauge theory, many subsystem
conserved quantities:

5 - ” 3 5 s ” 3 > T 3
Sg(y,z) — Ty i T E ) B Ty 41 ~i(w,y) T Oy 3

. z=Const x,z=Const x,y=Const

Because of the all the subsystem symmetries,
the dual 1-form symmetry ODO is defined o8 =11 [I
with a pair of separate and parallel loops: lec lec
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Again this theory can be imbedded into a U(1) gauge theory with
subsystem symmetries and a Gaussian gapless phase. For example, the
dual action of the gapless phase reads:

(m)j}:zw = 1_‘['7"',Ei H 'r; ~ exp (i ,%i fr,,ri:r“) exp (—i % (‘r-,,d:r")
Jer

lec  lec’

: 1 . 2
S, = /d" rdr W(@,—(T}‘ + 3 (V=(Veay — Vyae))” + (permute z,y,2).

Special 3d Z; Gange theory Eq. 32 K> K<.J Gapless Phase
(_Jﬁ,“ with rect. C in XY Corner law Area law r—'_\l— with y =1 and x > 1.
Op o+ parallel C, €' in XY; Arealaw of C, C'; Perimeter law of C; 7{— for unit square
separated along z exponential decay with Z | long range with Z .{7.{" separated along z
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Comment on general connection between Renyi entropy and ODO:

To compute the Renyi entropy, one makes n-copies of the system, the
symmetry is granted with an extra swapping symmetry between the
different copies. The Renyi1 entropy can be viewed as the <ODO> for
the swapping symmetry.

One can start with the »n-copy system, and compute both the ODO for
the dual of the intrinsic symmetry, and the extra swapping symmetry,
to extract the EE and information of dual symmetry simultaneously.

Cenke Xu
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