Title: General constraints on metals

Speakers: Dominic Else

Series: Quantum Matter

Date: January 11, 2021 - 2:00 PM

URL: http://pirsa.org/21010004

Abstract: Metals are ubiquitous in nature. One would like to determine the effective field theory that describe the low-energy physics of a metal. Many materials are successfully described by the so-called "Fermi liquid theory", but there is also much interest in "non-Fermi liquid metals" that evade such a description.

In this talk, I will present a very general perspective on metals that strongly constrains the possible effective field theories. The discussion is based on powerful theoretical concepts such as emergent symmetries and anomalies. From this perspective, combined with experimental observations, one can derive strong and unexpected conclusions about the nature of a particular kind of non-Fermi liquid metal, the "strange metal" observed in doped cuprates.

Pirsa: 21010004 Page 1/47

General constraints on metals

Dominic Else (MIT)

Colloquium, Perimeter Institute
January 11, 2021

Pirsa: 21010004 Page 2/47

An important dichotomy

Insulator

Conductivity $\sigma \sim e^{-T/\Delta}$

Metal

Conductivity $\sigma \sim T^{\alpha}$

What determines whether a material is a metal or an insulator?

Pirsa: 21010004 Page 4/47

Trivial vs. topological insulators

"Trivial" insulator

Ground state is entangled state

$$|\Psi\rangle \neq |\phi\rangle^{\otimes N}$$

(but still a continuous deformation of a product state)

Topological Insulator

Ground state is in a distinct phase of matter from a trivial insulator

Pirsa: 21010004 Page 5/47

Pirsa: 21010004 Page 6/47

Metals

"Filling"
Average number of electrons per translation unit cell

Cr.

For a metal, $\,$ should not be an integer

What is the nature of the ground state?

Pirsa: 21010004

The non-interacting approximation

Ignore Coulomb repulsion between electrons

$$H = \sum_{i,j} t_{ij} c_i^{\dagger} c_j$$

Free electron problem

S

 ${\cal U}$ not being an integer ensures that the band is not fully filled

Fermi gas in 2D

But what is the effect of including Coulomb repulsion?

Need to go beyond the non-interacting approximation

Effective field theory

Pirsa: 21010004 Page 10/47

An effective field theory of a metal: Fermi liquid theory

(Landau, 1957)

$$H = \sum_{k} \epsilon_{k} \hat{n}_{k} + \sum_{k,k'} V_{k,k'} \hat{n}_{k} \hat{n}_{k'}$$

Long-lived quasiparticles on the Fermi surface

Successfully describes many metals

but not all

Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide) High temperature superconductors (YBCO has T_c ~ 93 K)

Pirsa: 21010004 Page 12/47

Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide) High temperature superconductors (YBCO has T_c ~ 93 K)

Pirsa: 21010004 Page 13/47

Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide) High temperature superconductors (YBCO has T_c ~ 93 K)

Fermi liquid theory	Strange metals
Resistivity $ ho \sim T^2$	Resistivity $ ho \sim T$

Pirsa: 21010004 Page 14/47

Filling constraints

2

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

Pirsa: 21010004

Pirsa: 21010004 Page 16/47

Prior result #1: LSMOH theorem

Symmetry

Filling

Lattice translation

Charge conservation symmetry symmetry

Average charge per unit cell

Assume not spontaneously broken

Theorem: Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH)

If u is not an integer, then* the ground state must be metallic

*there are some loopholes that I won't go into

Prior result #2: Luttinger's theorem for Fermi liquids

Pirsa: 21010004 Page 18/47

Prior result #1: LSMOH theorem

Symmetry

 $G = \mathbb{Z}^d \times \mathrm{U}(1)$

Filling

unit cell

Average charge per

Lattice Charge translation conservation symmetry symmetry

Assume not spontaneously broken

Theorem: Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH)

If u is not an integer, then* the ground state must be metallic

*there are some loopholes that I won't go into

Prior result #2: Luttinger's theorem for Fermi liquids

Pirsa: 21010004 Page 20/47

Pirsa: 21010004 Page 21/47

Pirsa: 21010004 Page 22/47

Axial anomaly

Massless Dirac fermion

$$\mathcal{L} = \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi$$

Two conserved currents:

$$j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$$
$$j^{\mu}_{A} = \overline{\psi} \gamma^{5} \gamma^{\mu} \psi$$

U(1) imes U(1) symmetry

In the presence of background electromagnetic field, the axial current is not conserved:

$$\partial_{\mu}j_{A}^{\mu}\propto\mathbf{E}\cdot\mathbf{B}$$

Pirsa: 21010004 Page 24/47

Pirsa: 21010004 Page 25/47

Emergent $\,U(1) imes U(1)\,$ symmetry Left-moving and right-moving charges

$$\partial_{\mu}(j^L)^{\mu} = -E/(2\pi)$$
$$\partial_{\mu}(j^R)^{\mu} = E/(2\pi)$$

Pirsa: 21010004

Emergent $\,U(1) \times U(1)\,$ symmetry Left-moving and right-moving charges

$$\partial_{\mu}(j^L)^{\mu} = -E/(2\pi)$$
$$\partial_{\mu}(j^R)^{\mu} = E/(2\pi)$$

Emergent $\,U(1) \times U(1)\,$ symmetry Left-moving and right-moving charges

$$\partial_{\mu}(j^L)^{\mu} = -E/(2\pi)$$
$$\partial_{\mu}(j^R)^{\mu} = E/(2\pi)$$

Example of a 't Hooft anomaly

Pirsa: 21010004 Page 28/47

Pirsa: 21010004 Page 29/47

Pirsa: 21010004 Page 30/47

Emergent $\,U(1) \times U(1)\,$ symmetry Left-moving and right-moving charges

$$\partial_{\mu}(j^L)^{\triangleright \mu} = -E/(2\pi)$$
$$\partial_{\mu}(j^R)^{\mu} = E/(2\pi)$$

Example of a 't Hooft anomaly

Axial anomaly implies Luttinger's theorem

In the IR theory

(Assuming microscopic continuous translation symmetry for simplicity)

$$\hat{P} \sim k_L \hat{N}_L + k_R \hat{N}_R$$

$$\dot{n}_L = -E/(2\pi)$$

$$\dot{n}_R = E/(2\pi)$$

Generators of

Rate of change of momentum density: $\dot{p} = E(k_R - k_L)/(2\pi)$

$$\dot{p} = E(k_R - k_L)/(2\pi)$$

Microscopically

$$\dot{p} = E\rho$$

 ρ is the microscopic charge density [continuous translation symmetry analog of filling]

$$(k_R - k_L)/(2\pi) = \rho$$

Luttinger's theorem

Windows 10 📥 🖺 😂

Emergent symmetry of a 2-D Fermi liquid

Charge at <u>every</u> point on the Fermi surface is conserved separately!

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

$$H = \sum_{k} \epsilon_k \hat{n}_k + \sum_{k,k'} V_{k,k'} \hat{n}_k \hat{n}_{k'}$$

$$G_{IR}$$
= { Smooth functions from $S^1 o U(1)$ }
= $LU(1)$
"Loop group"

File, Machine, View, Input, Devices, Help, Windows 10 🕳 里 🗯

Emergent symmetry of a 2-D Fermi liquid

Charge at <u>every</u> point on the Fermi surface is conserved separately!

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

$$H = \sum_{k} \epsilon_k \hat{n}_k + \sum_{k,k'} V_{k,k'} \hat{n}_k \hat{n}_{k'}$$

$$G_{IR}$$
= { Smooth functions from $S^1 \rightarrow U(1)$ }
= $LU(1)$
"Loop group"

't Hooft anomalies of loop group

→ Luttinger's theorem

Pirsa: 21010004

Pirsa: 21010004 Page 35/47

The general filling formula

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

e.g. $S_M[A] = rac{1}{24\pi^2} \int_{M imes S1} A \wedge dA \wedge dA$

1. The emergent symmetry
$$G_{\rm IR}$$

2. The group homomorphism $\varphi: \mathbb{Z}^d \times {\rm U}(1) \to G_{\rm IR}$.

3. The 't Hooft anomaly $\alpha \in \mathcal{C}^d(G_{\mathrm{IR}})$

't Hooft anomaly of G_{IR} in d spatial dimensions

$$\longrightarrow$$
 $G_{\rm IR}$ SPT in d + 1 spatial dimensions

lacktriangle Topological action for a $G_{
m IR}$ gauge field in d+2 space-time dimensions

Set $M = T^d \times S^2$. Choose a G_{IR} gauge field on M as follows:

- Each of the non-trivial cycles on T^d carries a gauge holonomy of $\varphi(\mathbb{T}_k)$, $k=1,\cdots,d$, where $\mathbb{T}_1,\cdots,\mathbb{T}_d$ are the generators of \mathbb{Z}^d .
- \bullet The S^2 carries a unit Chern number of the U(1) symmetry generated by $\varphi(\hat{Q})$, where \hat{Q} is the generator of the microscopic U(1).

Then
$$\nu = \frac{1}{2\pi} S_M[A] \pmod{1}$$
.

Consequences

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

- Rederive past results
- The compressibility theorem

Theorem

If $d \geq 2$ and $G_{\rm IR}$ is a compact finite-dimensional Lie group, then ν is a rational number.

For irrational ν , $G_{\rm IR}$ must be an infinite-dimensional group – infinitely many conserved quantities!

Pirsa: 21010004 Page 37/47

Consequences

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

- Rederive past results
- The compressibility theorem

Theorem

If $d \geq 2$ and $G_{\rm IR}$ is a compact finite-dimensional Lie group, then ν is a rational number.

For irrational ν , $G_{\rm IR}$ must be an infinite-dimensional group – infinitely many conserved quantities!

We expect this to hold in general for (clean) metals.

Pirsa: 21010004 Page 38/47

Applications to strange metals

[**DVE**, T. Senthil, arXiv:2010.10523]

Pirsa: 21010004 Page 39/47

Applications to strange metals

[**DVE**, T. Senthil, arXiv:2010.10523]

Assumptions about strange metals:

Clean

Imply infinitely
many conserved
quantities

Exist at irrational filling

Conductivity scaling

$$\sigma(\omega,T) = T \Sigma(\omega/T)$$

 $\Sigma(0)$ Is finite

Conductivity of Fermi liquid theory

(Landau, 1957)

$$H = \sum_{k} \epsilon_k \hat{n}_k + \sum_{k,k'} V_{k,k'} \hat{n}_k \hat{n}_{k'}$$

$$\sigma(\omega, T) = D\delta(\omega)$$

- DC conductivity is infinite
- Scaling form

$$\sigma(\omega, T) = T\Sigma(\omega/T)$$

is satisfied with $\Sigma(0) = \infty$

Conductivity of Fermi liquid theory

(Landau, 1957)

Charge at <u>every</u> point on the Fermi surface is conserved separately!

$$H = \sum_k \epsilon_k \hat{n}_k + \sum_{k,k'} V_{k,k'} \hat{n}_k \hat{n}_{k'} \ \ {}^{\text{+ (dangerously irrelevant terms)}}$$

$$\sigma(\omega,T) = D\delta(\omega)$$

from conserved quantities

- DC conductivity is infinite
- Scaling form

$$\sigma(\omega, T) = T\Sigma(\omega/T)$$

is satisfied with $\Sigma(0) = \infty$

Applications to strange metals

[**DVE**, T. Senthil, arXiv:2010.10523]

Assumptions about strange metals:

- Clean
 Exist at irrational filling

 Imply infinitely
 many conserved
 quantities
- Conductivity scaling

$$\sigma(\omega,T) = T \Sigma(\omega/T)$$

$$\Sigma(0) \ ext{Is finite}$$

Conclusion:

$$\mathcal{M} = \chi_{P_x P_x} = \infty$$

in the strange metal

Pirsa: 21010004 Page 43/47

Future directions: implement these properties in holography?

Field theory in d space-time dimensions

Strongly coupled field theory in d space-time dimensions

Quantum gravity in d+1 space-time dimensions in asymptotic AdS space

Classical gravity in d+1 space-time dimensions in asymptotic AdS space

Pirsa: 21010004 Page 44/47

Conclusion/outlook

UV Detailed microscopic physics:

Electrons hopping between atoms + Coulomb repulsion

Renormalization-group (RG) flow

IR Low-energy, long-wavelength physics

can be described by an "effective field theory"

Pirsa: 21010004 Page 45/47

Conclusion/outlook

UV Detailed microscopic physics:

Electrons hopping between atoms + Coulomb repulsion

Renormalization-group (RG) flow

Structural constraints

IR Low-energy, long-wavelength physics

can be described by an "effective field theory"

Pirsa: 21010004 Page 46/47

Thank you!

Ryan Thorngren (Harvard)

T. Senthil (MIT)

Pirsa: 21010004 Page 47/47