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Abstract: Metals are ubiquitous in nature. One would like to determine the effective field theory that describe the low-energy physics of a metal.
Many materials are successfully described by the so-called "Fermi liquid theory™, but there is aso much interest in "non-Fermi liquid metals" that
evade such a description.

& nbsp;
In this talk, | will present a very general perspective on metals that strongly constrains the possible effective field theories. The discussion is based
on powerful theoretical concepts such as emergent symmetries and anomalies. From this perspective, combined with experimental observations, one

can derive strong and unexpected conclusions about the nature of a particular kind of non-Fermi liquid metal, the "strange metal" observed in doped
cuprates.
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An important dichotomy

Insulator Metal
Conductivity g ~ e~ 1/A Conductivity g ~ T%
E B

Gapped Gapless
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What determines whether a material is a

metal or an insulator?
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Trivial vs. topological insulators

-

L R . .
. . “Trivial” insulator

. . . Ground state is entangled state

T) # |6)®Y

. . . (but still a continuous deformation of a product state)

A

Topological Insulator

Ground state is in a distinct phase of matter from a trivial insulator
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Topological insulator (“integer type”)

Insulating £

(gapped)
in bulk A

Metallic E

.~ (gapless)on
boundary
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Metals

N “Filling”

@ @ @ Average number of electrons per

translation unit cell
[s

Forametal, ]/ should not be an integer

What is the nature of the ground state?

Pirsa: 21010004 Page 7/47



The non-interacting approximation

@ @ Ignore Coulomb repulsion between electrons

—_— . - 3 . ree electron pro em
ET i c;f ¢c; Freee bl
1,J

1/ not being an integer ensures that
kr, kr the band is not fully filled
k
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Fermi gas in 2D

But what is the effect of including
Coulomb repulsion?

Need to go byond the non-interacting
approximation

Fermi surface
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Effective field theory

UV Detailed microscopic physics:

Electrons hopping between atoms + Coulomb repulsion

Renormalization-group (RG) flow

A\

IR Low-energy, long-wavelength physics

can be described by an “effective field theory”

Trivial insulator:
“Null field theory” IA

L
Topological insulator:
Topological quantum field theory

Metal
7?7
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An effective field theory of a metal: Fermi liquid theory

(Landau, 1957)

'y k,'y.

H = E €Tk + E Vie k' T s
k

kK’
-

Long-lived quasiparticles on the Fermi surface

\ Successfully describes many metals
but not all

Fermi surface
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Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide)
High temperature superconductors (YBCO has T_c ~ 93 K)

TI\
g N _
~
i \ Strange Ve
', metal
i
]
SC
?
Doping
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Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide)
High temperature superconductors (YBCO has T_c ~ 93 K)

i \ Strange Ve
, metal
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Strange metals

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide)
High temperature superconductors (YBCO has T_c ~ 93 K)

L3 & . / - : :
. Strange P Fermi liquid theory | Strange metals
‘' metal

Ve
Resistivity p ~ T2 Resistivity p ~ T
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Filling constraints

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]
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Filling

&
UV Electrons, etc. symmetry G = Z9 x U(1) Filling
s \ Average charge per

We consider only clean ~ Lattice Charge unit cell
metals (no impurities) translation conservation

symmetry symmetry

\ J

A4
FI

IR Effective field theory
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Prior result #1: LSMOH theorem

symmetry (G = Zd X U(l) FI“lng
,/ \ Average charge per
Lattice Charge unit cell
translation conservation
symmetry symmetry

Assume not spontaneously broken

(@ )

Theorem: Lieb-Schultz-Mattis- /\

Oshikawa—Hastingg (LSMOQH) @ @ @

If 7/ is not an integer, then* the ground
state must be metallic

(I / *there are some loopholes
that | won't go into
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Prior result #2: Luttinger’s theorem for
Fermi liquids

Volume enclosed by
Fermi surface

LY Microscopic filling

— » [mod1]

Fermi surface
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Prior result #1: LSMOH theorem

smmery G =74 xU(1)  Filling
/ \ Average charge per
Lattice Charge unit cell
translation conservation
symmetry symmetry

Assume not spontaneously broken

( )

Theorem: Lieb-Schultz-Mattis- /\

Oshikawa-Hastings (LSMQOH) @ @ @

If 7/ is not an integer, then* the ground
state must be metallic

(I ~/ *there are some loopholes

that | won't go into
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Prior result #2: Luttinger’s theorem for
Fermi liquids

Volume enclosed by
Fermi surface

Microscopic filling

— v [mod1]

Fermi surface
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UV Electrons, etc. symmetry

A\

IR Effective field theory

Filling

G=17%%xUQ1) Filling
/ \ Average charge per
Lattice Charge unit cell
translation conservation
symmetry symmetry

\

Will vastly generalize
Luttinger’s theorem
FI and Lieb-Schultz-
Mattis-Oshikawa-
Hastings theorem
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Filling

UV Electrons, etc. symmetry G = Z9 x U(1) Filling
/ \ Average charge per
Lattice Charge unit cell
translation conservation
symmetry symmetry
| )
v
. . Emergent%
IR Effective field theory -7 " GIr
Anomaly
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Axial anomaly

Massless Dirac fermion
L =yYyHouy
N

Two conserved currents:

P = PyHy
i = PyPyHa
U(1) x U(1) symmetry

In the presence of
background electromagnetic
field, the axial current is not
conserved:

0, x E-B
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Axial anomaly in a 1D Fermi gas
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Axial anomaly in a 1D Fermi gas

E—pu E—n
N A

v

4
&5
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Axial anomaly in a 1D Fermi gas

E—pu E—n

A

4
&5

' _ /

Left-movers Right-movers E

Emergent U(l) X U(l) symmetry
Left-moving and right-moving charges a,uJ (jL)'u = *E/(Qﬂ-)
Ou(§™)* = E/(2m)
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Axial anomaly in a 1D Fermi gas

E—pu E—n

A

4
&5

/£

s

Left-movers Right-movers E

Emergent U(l) X U(l) symmetry
Left-moving and right-moving charges a,uJ (jL)'u = *E/(Qﬂ-)
Ou(§™)* = E/(2m)
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Axial anomaly in a 1D Fermi gas

E—pu E—n

A

&5

/£

Left-movers Right-movers E

Emergent U(l) X U(l) symmetry
Left-moving and right-moving charges a,uJ (jL)'u = *E/(Qﬂ-)
Ou(§™)* = E/(2m)

Example of a ‘t Hooft anomaly
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Remarks on ‘t Hooft anomalies

1A

(Topological)
insulator in bulk

* Nonconservation of charge in
response to background gauge field

Metallic on
boundary

Pirsa: 21010004

Page 29/47



Remarks on ‘t Hooft anomalies

1A

(Topological)
insulator in bulk

* Nonconservation of charge in
response to background gauge field
* (“t Hooft anomalies in d spatial \ E
dimensions)
PAEN Metallic on
boundary

(Topological insulators in d+1 spatial

dimensions) ‘t Hooft anomaly

& File, Machine, View, Input. Devices, Help. windows 10 — B &3
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Axial anomaly in a 1D Fermi gas

Left-movers Right-movers E

Emergent U(l) X U(l) symmetry

Left-moving and right-moving charges

B, (jL) = —E/(2r)
8, (78" = E/(27)

Example of a ‘t Hooft anomaly
5 File, Machine, View_. Input, Devices, Help

. windows10 = B &
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Axial anomaly implies Luttinger’s
theorem
In the IR theory (Assuming microscopic continuous
k k: translation symmetry for simplicity)
L A ~ A
= ., P ~ ki Ny + krNg
aﬂ(jL)# = _E/(2ﬂ-) - ny = _E/(Qﬂ-) Gerj.erator's of
Ou(j)" = E/(2) ng = E/(2) WA 2
\

Rate of change of momentum density: p = E(kR == ]{TL )/(27‘!’)

}‘) . EP p is the microscopic charge density
[continuous translation symmetry analog of filling]

Microscopically

)

(ICR — kL)/(zﬂT) — p I Luttinger’s theorem

& File, Machine, View. Input, Devices, Help. windows 10 — B &3
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Emergent symmetry of a 2-D Fermi liquid

s ky [DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]
= E €LTL —|— E Vk Lot T TV g
ke, ket
=k$

Gir
= { Smooth functions
from S* — U(1) }
= LU(1)

“Loop group”

Charge at every point on the Fermi
surface is conserved separately!

4 File, Machine, View. Input, Devices., Help, Windows 10 —
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Emergent symmetry of a 2-D Fermi liquid

y ky [DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

H = Z €Ly + Z Vk L Y

k,k’

Gir
= { Smooth functions

from S* — U(1) }

— LU(1)
\ “Loop group”

Charge at every point on the Fermi
surface is conserved separately! ‘t Hooft anomalies of loop group

— Luttinger’s theorem
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Filling

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

UV Electrons, etc. symmety G = Z< x U(1) Filling
/ \ Average charge per
Lattice Charge unit cell

translation conservation

symmetry symmetry

\ J
\4

’ . Emergent

IR Effective field theory 9" GIr

‘t Hooft anomaly
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The general filling formula

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

1. The emergent symmetry Gig General

formula  Filling
2. The group homomorphism ¢ : Z% x U(1) = Gig.
3. The 't Hooft anomaly « € C*(G1r)
p . . . , 1
:c_H’ooft anomaly of Gir l_n ds-spatla! dimensions eg Sy [A] s . AN dé A dA
G1r SPT in d + 1 spatial dimensions 24m= Jrrwst

L= Topological action for a G'1r gauge field in d+2 space-time dimensions

Set M = T? x S%. Choose a Gir gauge field on M as follows:

e Each of the non-trivial cycles on T9 carries a gauge holonomy of ¢(T}),
k=1,---,d, where Ty,--- , T4 are the generators of Z%.

e The S? carries a unit Chern number of the U(1) symmetry generated by
©(Q), where @ is the generator of the microscopic U(1).

Theri = %SM [A]  [mod1].
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Consequences

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]
* Rederive past results

* The compressibikty theorem

(@ )

Theorem

If d > 2 and G is a compact finite-dimensional Lie group, then 1/ isa
rational number.

For irrational ¥, Gir must be an infinite-dimensional group — infinitely many
conserved quantities!
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Consequences

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]
* Rederive past results

* The compressibility theorem @ @ @

(@ )

Theorem

Ifd > 2 and G is a compact finite-dimensional Lie group, then 1/ isa
rational number.

For irrational ¥, Gir must be an infinite-dimensional group — infinitely many
conserved quantities!

We expect this to hold in general for (clean) metals.
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Applications to strange metals

[DVE, T. Senthil, arXiv:2010.10523]
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Applications to strange metals

[DVE, T. Senthil, arXiv:2010.10523]

Tl\ )
- i Assumptions about strange metals:
e f::::lge 7 e (Clean | Imply infinitely

\ ' s Existati ti | filli — many conserved
o, xist at irrational filling = e
* f
S * Conductivity scaling

—@- >
22?2  Doping O'(OJ, T) T T*E(M/T)

b3 (0) Is finite
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Conductivity of Fermi liquid theory

(Landau, 1957) A o
H = E ExNk + E Vi ko' g Mger
k kK’

e
k j & * DC conductivity is infinite

e Scaling form

o(w,T)=TX(w/T)

is satisfied with 2(03 — 00
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Conductivity of Fermi liquid theory

(Landau; 1957) " A oA + (dangerously
H = E €L + E :Vk?kf?’l,]{;nkf irrelevant terms)
k k,k’

& ky

o(w,T) = Dé(w)

* DC conductivity is infin‘iﬂ-te
e Scaling form

o(w,T)=TX(w/T)

is satisfied with Z(()) — 00

N

Charge at every point on the Fermi
surface is conserved separately!
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Applications to strange metals

[DVE, T. Senthil, arXiv:2010.10523]

T A Assumptions about strange metals:
"~ - * (Clean " } Imply infinitely
. * Exist atirrational filling | ™" plaas

, metal quantities
~  Conductivity scaling
sct
X o(w, 1) =TX(w/T
A (@, T) = TE(w/T)
2?2 Doping 3(0) 1s finite

Conclusion:

M =xp,p, =

in the strange metal
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Future directions: implement these properties
iIn holography?

Field theory in d space-time ) Duality Quantum gravity in d+1 space-time
A T T dimensions in asymptotic AdS space
Strongly coupled field theory in | Duality Classical gravity in d+1 space-time
d space-time dimensions dimensions in asymptotic AdS space

[Image from Wikipedia]
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Conclusion/outlook

UV Detailed microscopic physics:

Electrons hopping between atoms + Coulomb repulsion

Renormalization-group (RG) flow

A\

IR Low-energy, long-wavelength physics

can be described by an “effective field theory”
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Conclusion/outlook

UV Detailed microscopic physics:

Electrons hopping between atoms + Coulomb repulsion

r 3

Renormalization-group (RG) flow Structural

constraints

A\

IR Low-energy, long-wavelength physics

can be described by an “effective field theory”
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Thank you!

Ryan Thorngren T. Senthil
(Harvard) (MIT)
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