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Abstract: The Ryu Takayanagi formula identifies the area of & nbsp; extremal surfaces in AdS with the entanglement entropy of the boundary CFT.
However the bulk microstate interpretation of the extremal area remains mysterious. Progress along this direction requires understanding how to
define entanglement entropy in the bulk closed string theory. As atoy model for ADS/CFT, we study the entanglement entropy of closed strings in
the topological A model in the context of Gopakumar Vafa duality. We give a self consistent factorization of the closed string Hilbert space which
leads to string edge modes transforming under a g-deformed surface symmetry group. Compatibility with this symmetry requires a g-deformed
definition of entanglement entropy. Using the topological vertex formalism, we define the Hartle Hawking state for the resolved conifold and
compute its g-deformed entropy directly from the closed string reduced density matrix.& nbsp; We show that this is the same as the generalized
entropy, defined by prescribing a contractible replica manifold for the closed string theory on the resolved conifold.&nbsp; We then apply the
Gopakumar Vafa duality to reproduce the closed string entropy from Chern Simons dual & nbsp; using the un-deformed definition of entanglement
entropy. Finally we relate non local aspects of our factorization map to analogous phenomenon recently found in JT gravity.
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Generalized entropy in topological string theory

Gabriel Wong
Fudan University

In collaboration with William Donnelly, Manki Kim, Yikun Jiang.
Based on hep-th https:/ /arxiv.org/pdf/2010.15737.pdf
And a follow up hep-th 2012.XXXX

Pirsa: 20120031 Page 2/49



The HRRT/generalized entropy formula

is the basis for understanding space-time emergence from
entanglement.
AdSp.

(A(w))

e + Shulk + **+  RT 2006, FLM 2013, HRT, Dong

SCFT = Sgen —

What is the bulk microscopic interpretation of the area term?

Interesting because it measures the entanglement of the spacetime (Van Raamsdonk)

We want to understand this question from the bulk string theory

Bekenstein Hawking entropy as string entanglement entropy

A
SBH = 3G

Susskind Uglum: BH entropy is the entanglement entropy of closed
strings across the horizon
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The factorization problem and edge modes

Understanding entanglement in the bulk requires factorization
Bulk factorization is hard because it is sensitive to UV d.o.f. fHarlow)

Hbulk Hr @ Hr

Boundary CFT factorizes. But the low energy theory in the bulk does not naively factorize
Need to introduce high energy bulk charges to factorize a Wilson line in thelow energy EFT.

Low energy theory must be extended to include entanglement edge modes that probe
the bulk microstates.

A tempting conjecture:

Perhaps the area term is the entanglement entropy of gravity edge modes

(J Lin, D. Harlow, Donnelly-Friedel, Donnelly-Wong)

Pirsa: 20120031 Page 4/49



Area term in generalized entropy

The generalized entropy is obtained via the Euclidean gravity path integral Z(5) on a cigar
geometry

Sgen = (1 — B03) log ¥(B) Z(B) = C B

—_— -@ —|— S + .o
4G out (Gibbons- Hawking)

The area term comes from saddles where the circle shrinks in the interior to make a cigar

FEometty (See also recent discussion by Harlow- Shaghoulian, Jafferis-Kolchmeyer)

Can we give a canonical interpretation?

Z(B) =tre PH?
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Shrinkable boundary conditions and edge modes

Naively, we can give a trace interpretation if wie have a shrinkable boundary condition €

2(6)= @ G oo ) muem

This suggests generalized entropy is related to entanglement entropy:

In gravity, a topological constraint ( Gauss Bonnet) implies the shrinkable boundary condition

determined by the cap is non local in modular time (Kolchmeyer Jafferis). How do we
interpret this?

Motivated by Susskind and Uglum, we look for an answer in string theory
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BH entropy from perturbative closed strings

Consider string theory on the flattened cigar geometry (Susskind Uglum)

S=(1-B0) 150, 1082(8)  1ogz - Efr 3
.___.//
!

String theory path integral on manifold with conical angle
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BH entropy from perturbative closed strings

Consider string theory in a large black hole where the cigar geometry flattens. (Susskind Uglum)

I_ N N TN
§ = (1— Bdg) ‘,gzzr log Z(53) logZ = | ] + [T f =~
N
String theory path integral on manifold with conical angle

Open-closed string duality gives a canonical interpretation to the tree level entropy

Contact <£

Zsphere (6) s
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BH entropy from perturbative closed strings

Consider string theory in a large black hole where the cigar geometry flattens. (Susskind Uglum)

S = (1 - B8s) |s—a. log Z(B)

I

String theory path integral on manifold with conical angle

Open-closed string duality gives a canonical interpretation to the tree level entropy

Contact
term

Zsphere (5) . tr(e_H‘mm )

String edge moges are the branes (non- perturbative objects!) needed to cut the
string (Donnelly Wong 2016)

Susskind-Uglum : Generalized entropy =entanglement entropy of closed strings
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Previous work

* Orbifold replica trick, String field theory, Topological string/Chern Simons gauge theory duality
( Hubeny- Rangamani-Pius, Witten, Takayanagi et. al, Balasubramanian-Parrikar , Nassar ,Dabholkar,
Strominger,...)

¢ String theory dual to 2DYM- Extended TQFT methods ( Donnelly -Wong )

We apply extended TQFT methods to A model topological string

Important features:

* Perturbative amplitudes computable to all orders in string coupling
* String field theory is captured by a topological field theory !

e UV completion from large N limit of g-deformed Yang Mills

(Sums over topology changing processes corresponding to baby universes)
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Overview

* We study entanglement entropy in top string theory using Gopakumar Vafa duality
as a topological analog of AdS/CFT

Closed strings on resolved . Open strings on
Conifold deformed Conifold

B field flux on 5°(t) N branes on S°
t=19;N g2
83

S%(t)

U(N) Chern Simons theory
A Model TQFT on g

* We defined a notion of generalized entropy for the topological string
* We apply extended TQFT methods to factorize the ““bulk” closed string Hilbert space

* Canonical calculation of generalized entropy on both sides of the duality. Edge modes are
anyons transforming under a quantum group symmetry.

* Realization of Susskind Uglum: Generalized entropy of closed strings = Thermal entropy
of open strings ending on entanglement branes
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Qutline

Hartle Hawking state in string theory

Formulating the factorization problem in extended TQFT

A model closed TQFT and generalized entropy
D brane edge modes ane the canonical calculation of

generalized entropy
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A model topological strings

The resolved conifold The free energy is an instanton sum

2- homology class

t = A + 1B XKahler modulus B
; W
S°(t)

Gromov Witten invariants

(D) — .

Genus g worldsheet S2(t) at the tip

instanton

Target space = 6 dimensional Kahler manifold ( Not necessarily Calabi Yau)
Closed string theory localizes to worldsheets instantons wrapping minimal volume 2 cycles

Amplitudes depend only on Kahler modulus
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A model topological strings

The resolved conifold The free energy is an instanton sum

2- homology class

t = A + 1B Kahler modulus - B
, F = E g9 2J'Vg,;ne L
S (%) o

Gromov Witten invariants

Mq% - 9

Genus g worldsheet g2 ( t) at the tip

instanton

The resolved conifold partition function.

Z:e_F:exp i :
ng

71 n(2sin(w-
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Time slices in string theory

In the first quantized (single string) theory, a state is a wavefunctional of closed loop

X* (o) Single string wavefunctional

V[X*(0)]

X(o)* € F =loop space of X
P sp

In the second quantized theory, the string field is an operator valued function on F

~

(X (0)] ¥ X* (o))
Degrees of freedom lives on F — a time slice is a subset of N FaEl

L=CxS8'cX
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Time slices in string theory

In the first quantized (single string) theory, a state is a wavefunctional of closed loop

X*(o) Single string wavefunctional
VX" ()]
X(o)* € F =loop space of X

In the second quantized theory, the string field is an operator valued function on F

~

V[X*(o)] VX" (o))

Degrees of freedom lives on F — a time slice is a subset of Fy C F

L=CxS8'cX
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Closed TQFT and the category of 2D cobordisms

The cobordism description is a “generator-relations” approaclj to the path integral.

Cobordisms form a category:

Objects= co-dim 1 manifolds Morphisms =Cobordisms Sewing relations

- vi- X@N-

Hch‘)sed

A 2D closed TQFT is a rule that assigns Hilbert space to circles and linear maps to cobordism.
The composition of linear maps satisfies the sewing relations.

These cobordisms are in the target space

Hclosed ® Hclosed

2D TQFT is a Frobenius Algebra with the multiplication of states defined by v l

closed
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2D Extended TQFT

To describe entanglement and factorization we need to cut open the co-dim 1 time slices

This requires an extension of the TQFT that introduces codim 1 manifolds with boundaries
that support edge modes

Open Open-closed

=~ g

We treat the factorization maps as elements of the cobordism data subject to local constraints

given by open-closed sewing relations (Moore Segal, Lazariou, Pfeiffer and Lauda)

/‘T

AF >
a s &
’ N .
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2D Extended TQFT

The extended TQFT assigns an open string Hilbert space Hopen to the interval

Trace and adjoint operation on Hopen :

The open cobordisms include an invertible bilinear form:

?{-upen ® HO]}ED T //—-\\

] ] L P,
l \/ / \_.E\_}rf L

C

They determine a propagator (modular flow),  and define a canonical trace function

oty
Ciry = i)
7Y

p

B [ o E_IﬂH :/_.\\, ii " _ﬁH
,"_(’j,_': — tr € open

S

Area dependent QFT (Runkel et.al)
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The E Brane axiom

Factorization should not change the state:

50 ¢ s?

We introduced the E brane ainom to axiomatize the shrinkable boundary condition (Donnelly-Wong)

e

N

6 —[e-Gr| -G -0-

This is a reformulation of the Susskind Uglum’s open-closed string duality in the target space

The E brane axiom and the sewing relations give a complete set of constraints which can be solved to
obtain the factorization maps and edge modes by bootstrap”
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2D Extended TQFT

The extended TQFT assigns an open string Hilbert space Hopen to the interval

Trace and adjoint operation on Hopen :

The open cobordisms include an invertible bilinear form:

?{-upen ® HO]}ED //—-\\

C

They determine a propagator (modular flow),  and define a canonical trace function

oy 2 =
i = i =ePH
\:};‘ qj [ f/;“\-l :“ tr" e_ﬁHupen

7

p

Area dependent QFT (Runkel et.al)
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2D Extended TQFT

To describe entanglement and factorization we need to cut open the co-dim 1 time slices

This requires an extension of the TQFT that introduces codim 1 manifolds with boundaries
that support edge modes

Open Open-closed

fl'_r\\ - B
rd N\ f )
(e — 7 e

We treat the factorization maps as elements of the cobordism data subject to local constraints
given by open-closed sewing relations (Moore Segal, Lazariou, Pfeiffer and Lauda)

1

> AR (o
RERTICN B
@ ;Uy e % |
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The E Brane axiom
Factorization should not change the state:

éﬁ\
0. - L

| I

We introduced the E brane axiom to axiomatize the shrinkable boundary condition (Donnelly-Wong)

e

N

il /_\ /f\\ _
i —e-elit &0

This is a reformulation of the Susskind Uglum’s open-closed string duality in the target space

The E brane axiom and the sewing relations give a complete set of constraints which can be solved to
obtain the factorization maps and edge modes by “bootstrap”
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A model string field theory as an extended TQFT

Consider A model string theory on a sum of line bundles over a Riemann surface (with boundary)
X=Li1®Ly, > S (Bryan, Pandharipande)

The sewing rules of the multi-string amplitudés are the same as a closed TQFT. The cobordisms are
now labelled by Chern classes (K1, k2) which captures the higher dimensional geometry

(klsk'a‘)

Resolved conifold

o fLU: (0-1)
6D Target space __J/ S 7 _ (HH*|HH) N @

(_110)
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A model string field theory as an extended TQFT

Consider A model string theory on a sum of line bundles over a Riemann surface (with boundary)
X=L1®dLy— S (Bryan, Pandharipande)

The sewing rules of the multi-string amplitudes are the same as a closed TQFT. The cobordisms are
now labelled by Chern classes (K1, k2) which captures the higher dimensional geometry

(k1,k2) Resolved conifold
I

6D Target space= S Z = (HH*|HH)

The new ingredients in the sewing relations are the Chern class labelling and a g-deformation of the
edge modes

Quantum trace Braiding

TN _
O = tree BHopen %g

N o
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The A model TQFT on Calabi-Yau manifolds

The Calabi Yau condition for X = Ly @ Ly — § with Chernclass (ki,ky) is

ki + ks = —x(S)

This subcategory of 2-cobordisms with line bundles forms a Frobenius algebra generated by:
(Aganagic- Ooguri Saulina Vafa)

E brane with Calabi Yau cap

(0,1) (1,0)

(0.-1) (-1,0) , (0,—1)
o] o Y © -

Hartle Hawking state

We insert a large N number of branes/antibranes at each in/out boundary. Gluing
cobordisms corresponds to brane-anti-brane annihilation which glues together mult- string
amplitudes
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The A model TQFT on Calabi-Yau manifolds

The Calabi Yau condition for X = L1 @ Ly — § with Chern class(k1, k) is

kl - kg = —X(S)

The partition function on X

Z(k1,ky) = Z(dq(R))Xq(k1—kg}ng,/de—tl(R) q = &%
R ) .
/ Bundle structure is captured by the phases

Young tableaux = U(OO) irrep
g-deformed symmetric group dimension
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“Generalized entropy” of the Hartle Hawking state
-1,-1)

2 —tI(R The resolved conifold
2(t) = . = T ldo(7

We replicate the angle around two anti podal points on the sphere

b I — EQUEB
Z(p) = AUB
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“Generalized entropy” of the Hartle Hawking state
(_11 _1)

Z(t) = = Z(dq(R))Qe—“(R) The resolved conifold
R

We replicate the angle around two anti podal points on the sphere

2= 24UEB
AUB

A naive cyclic gluing of the replica manifold changes the Chern classes to (—n, —n)

This has no geometric interpretation for non-integer n
I

Instead we impose a topological constraint that the bundle structure/Calabi-Yau
condition is preserved.
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“Generalized entropy” of the Hartle Hawking state

CY condition preserving replication just rescales the Kahler modulus £ — nt

Sgen = (ln_ Bds)log Z(B) = Y p(R)(~Inp(R) +{2Indy(R))
R

“*Area term”

R = Representation label for edge mode symmetry
(dy (R))2e )

Z
d,(R) = edge mode degeneracy

Same structure as EE of
non abelian gauge theory p(R) =
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Shrinkable boundary condition from the Calabi-Yau cap

As in gravity, Calabi Yau caps imply a nonlocal shrinkable boundary condition

(01 _1)

v ® (UD) = Y ()P dy(R)g"/*rr (U)

R

= §(U, D)

The worldvolume holonomy is a nontrivial diagonal matrix of phases

. ]
D;; = 6;;47""? € U(c)

We will identify D with Drinfeld element of a quantum group
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“Generalized entropy” of the Hartle Hawking state
(_11 _1)

Z(t) = = Z(dq(R))ze—ﬂ(RJ The resolved conifold
R

We replicate the angle around two anti podal points on the sphere

2= EQUEB
AUB

A naive cyclic gluing of the replica manifold changesithe Chern classes to (—n, —n)

This has no geometric interpretation for non-integer n

Instead we impose a topological constraint that the bundle structure/Calabi-Yau
condition is preserved.
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The A model TQFT on Calabi-Yau manifolds

The Calabi Yau condition for X = Lj & Ly — & with Chern class (k;,k;) is

kl - kz = —X(S)

This subcategory of 2-cobordisms Wit{‘l line bundles forms a Frobenius algebra generated by:

(Aganagic- Ooguri Saulina Vafa)

E brane with Calabi Yau cap

(0,1)

(0,-1) (-1,0) (0,—1)

O © . ) e =

Hartle Hawking state

We insert a large N number of branes/antibranes at each in/out boundary. Gluing
cobordisms corresponds to brane-anti-brane annihilation which glues together mult- string
amplitudes
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“Generalized entropy” of the Hartle Hawking state
(=ds—1)

2 —tI(R The resolved conifold
2(6)= (Q =2 (di(B

We replicate the angle around two anti podal points on the sphere

b I — 24UEB
AUB

A naive cyclic gluing of the replica manifold changes the Chern classes to (—n, —n)

This has no geometric interpretation for non-integer n

Instead we impose a topological constraint that the bundle structure/Calabi-Yau
condition is preserved.
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The A model TQFT on Calabi-Yau manifolds

The Calabi Yau condition for X = L1 @ Ly — § with Chern class(k1, k) is

ki + k2 = —x(S)

The partition function on X

* »
Z(kl ’ k?) . Z(dq(R))x q(kl _kQ}ﬁR/‘ie—ﬂ(R) g = e'9s
R AN

/ Bundle structure is captured by the phases

Young tableaux = U(OO) irrep
g-deformed symmetric group dimension
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“Generalized entropy” of the Hartle Hawking state

CY condition preserving replication just rescales the Kahler modulus £ — nt

Sgen = (1 — B83)log Z(B) = ) p(R)(~Inp(R) +{2Indy(R))
R

“*Area term”

R = Representation label for edge mode symmetry
(dy (R))2e )

Z
d,(R) = edge mode degeneracy

Same structure as EE of
non abelian gauge theory p(R) =
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The A model TQFT on Calabi-Yau manifolds

The Calabi Yau condition for X = L; @ Ly — 8§ with Chernclass (k;,k;) is

kl -+ kg = —X(S)

This subcategory of 2-cobordisms with line bundles forms a Frobenius algebra generated by:

(Aganagic- Ooguri Saulitk Vafa)

E brane with Calabi Yau cap

(1.0}

((5) (-1@-0) %l? & (0,—-1)

Hartle Hawking state

We insert a large N number of branes/antibranes at each in /out boundary. Gluing
cobordisms corresponds to brane-anti-brane annihilation which glues together mult- string
amplitudes
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Factorization, E brane axiom and edge mode symmetry

(U|HH) = O Z (—i) B g, (R)g™/*e "Rt (D)

We solve for the factorization map subject to TQFT sewing relations and the E
brane axiom

(I
Factorization map @
|

=

b

J,-1)
7~ \_\ PR
e

\
e e
Helosed — %open X Hopen t '\_/' ) v'_,)

\/

[
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Factorization, E brane axiom and edge mode symmetry

(01_1)

UHH) = €) = ZR:( —i)B g/t g (R)e Pt (1)

We solve for the factorization map subject to TQFT sewing relations and the E
brane axiom

(I
Factorization map @
: G

),-1)
//_\\
€}

5, ?{C 0se _>' HO en ® HO en
ﬁ\ losed p P : g ;

| E g

The edge mode symmetry group compatible with the E brane axiom is U(oo
large N limit of the quantum group U(N)q with q = e'9s

The open string edge modes are anyons !
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Edge modes as D branes

Introduce N>>1 entanglement. branes on L', which intersects L

This give a new sector of open strings endingon £ N L
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Edge modes as D branes

Introduce N>>1 entanglement. branes on L' which intersects L

This give a new sector of open strings endingon £’ N L

Factorization map

Hc]osed — %open ® Hopen

trf (U) — trh(UAUB) = Y (D) R(UA)i R(UB);
ikj

Drinfeld element Representation Matrix
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Open string wavefunctions
Consider the undeformed case q=1 corresponding to zero string coupling

A(U(N)) = Commutative algebra of functions on a U(N)
Chan paton factors label

E branes l

Generators (Ul[, J) = Uil_};i Ui?j-} o Uir&jn
i

t2

Bosonic statistics Uz-1 jit Uig go = Ui.z s U'i-l 1

q-deformation gives the open string anyon statistics

A(U;(N)) non commutative algebra of functions

Anyonics statistics Uil h Uig Ja 75 Ufg J2 Uil J1

defined by R matrix Xi;
Hopen e A(U(OO)Q)

U; = Pexp/X;."jA
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The Drinfeld element of U(N),

A quantum group element g acts on the open string by a q-deformed version of U — gUg . Thisis
the edge mode symmetry. The invariant trace function is given by

try (V) = trR(u‘lU) u; = 5ijqﬁ~";’2q—i—1;’2 is the Drinfeld element

The quantum dimension is given by

dim, (R) = tr} (1)

It is the dimension of the collective Hilbert space of many anyons corresponding to the open string
endpoints .

For n>>1 anyons of type R their collective Hilbert space has dimension

lim dim H(n) — (dim,(R))"

Nn—00
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The large N limit of the Drinfeld element

The large N limit of the Drinfeld element is subtle: it requires an analytic continuation of q and
converts U(N) quantum dimensions into symmetry group quantum dimensions with phases:

D=g"%?u lim trr(D) = (—i)'®d,(R)q**/*

N—oo

The limit plays an important role in relating A model strinIg theory to g-deformed 2D Yang

Mills, as well as the Gopakumar Vafa duality related the closed string theory to open string
theory with a large N number of D branes

D is also the holonomy that defines the shrinkable boundary condition in the presence of
the Calabi Yau constraint

(0,-1) Calabi Yau cap
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The canonical calculation of entanglement entropy

(0-1) Un normalized density matrix

A B
(-1,0) L\ )

® _
o

(0-1)

p=|HH)(HH*| =

AT
£ ek

Al

‘ Rj

Reduced density matrix pa=trpp=

— T
ey \
L )

T\ P Degenerate for fixed R

="

(A

Edge modes trgpa= — 7 = Z(dq(R))Qe—ﬂ(R)

]

I X, A R

Summing over branes gives a closed
Quantum trace : invariant under q- string theory! (large N open-closed

deformed edge mode symmetry string duality )

Page 46/49



g-deformed entanglement entropy as generalized entropy

The quantum trace defines a g-deformed entanglement entropy ( used non-unitary
systems).

S —trg(palogpa) = —tr(Dpalogpa) = Z;p(R)(— Inp(R) + 2Ind,(R)) Matches the generalized
R entropy !
(dg(R))2e 1P

p(R) 7

Analogous formula for the generalized entropy irfJT (Jafferis-Kolchmeyer , Kitaev-
Suh)

We identified the ““defect operator” D with the Drinfeld element of U (OO)q which
defines the quantum trace.
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Questions and future directions

* What does this teach us about entanglement in general string theories? Are we probing a
universal sector of the edge modes ?

* We used the target space TQFT to define E branes. What is the worldsheet description?
Maybe this would give a hint of how holes emerges on the worldsheet

* Is it possible to relate the large N open-closed string duality involve E branes with the
“physical “ large N Gopakumar Vafa duality?

* The relation to JT suggests suggests we shotld look for a g-deformed description of JT
gravity and seek a symmetry description of the defect operator

* We used a categorical notion of trace to give the micro state interpretation. Is category
theory useful in formulating quantum gravity? Perhaps we gain some flexibility in address
puzzles like factorization, e.g. the use of quantum traces.

* What about the UV completion via g2DYM and the sum over topologies?
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Non-locality and factorization in topological strings

Shrinkable boundary condition can be local in modular time

Constrained 2D BF gauge theory =|T gravity ‘/\

Fa¥
== tr(De_-SH)

Fal
—tr(Dpslogpa)

This is the same result as in Jafferis Kolchmeyer, but we give a symmetry perspective on the ““defect
operator” D as the Drinfeld element.

Question: Is this non local boundary condition an artifact of a low energy effective theory? Or can
the microscopic Hilbert space of quantum gravity be fundamentally non-local?

Recent discussion: (Harlow- Shaghoulian)
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