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Abstract: Consistent dynamics which couples classical and quantum& nbsp;systems exists, provided it is stochastic. This provides away to

study the back-reaction of quantum systems on classical ones and has& nbsp;recently been explored in the context of quantum fields back-reacting
on space-time. Since the dynamics is completely positive and& nbsp;circumvents various no-go theorems this can either be thought of as
a& nbsp;fundamental theory, or as an effective theory describing the limit of & nbsp;quantum gravity where the gravitational degrees of freedom are
taken& nbsp;to be classical. In this talk we explore some of the consequences of & nbsp;complete positivity on the dynamics of classical-quantum
systems. We& nbsp;show that complete positivity necessarily results in the decoherence& nbsp;of the quantum system, and a breakdown of
predictability in the& nbsp;classical-phase space. We prove there is a trade-off between the rate& nbsp;of this decoherence and the degree of
diffusion in the metric: long& nbsp;coherence times require strong diffusion relative to the strength of& nbsp;the coupling, which potentially
provides a long-distance experimental & nbsp;test of the quantum nature of gravity & nbsp;We discuss the consequences of & nbsp;compl ete positivity
on preparing superpositions of gravitationally& nbsp;different states. Each state produces different distributions of the& nbsp;gravitational field
determined by the constraints of the theory. The& nbsp;overlap of these distributions imposes an upper bound on the degree of & nbsp;coherence of
the superposition.
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Motivation
®00

Motivation - why study classical quantum dynamics?

Zach weller-davies

@ Revisiting the question of whether or not gravity can be
fundamentally classical

(Feynman 1957 Chapman Hill, Eppley-Hannah 1977, Blanchard
Jadczyk 1993, Diosi 1995)
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Motivation
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Zach weller-davies

@ We can write down a classical-quantum master equation and
use symmetry + complete positivity + physics input input to
determine experimental and theoretical consequences

do 1

i fdzf WH (z | 2) Lo (Z) L] - 3 {/ dZ’ W (7| z) LI L, Q(Z)}

Not the same as semi-classical gravity

In this talk | will discuss some of the consequences of
complete positivity on the dynamics
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Motivation
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Main Messages

Using positivity of the state and complete positivity of the
dynamics

/ r"Ava!'l‘l'i_;; 4|_f‘1 A!f_!;:{.i” ',i‘\A}f‘l:lA'HIi_fI;lA'f"’_),"A’] _J}\\.Al_f,;l.lr'\}‘\IAI"I._.';\A’

A trade off between diffusion and decoherence

We will show there is a trade-off between the decoherence and
diffusion: long coherence times require strong diffusion

Trade-off is experimentally bounding

The trade-off between decoherence and diffusion places strong
experimental bounds on post-quantum theories of gravity,
providing a potential indirect test for the quantum nature of gravity

Positivity of the state and gravitational decoherence

By demanding positivity of the CQ state, we can gain insight into
some of the puzzling natures of the Diosi-Penrose decoherence rate
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CQ state
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What is a classical-quantum state?

Zach weller-davies

Classical quantum states o(q, p)

The state space consists of a Hilbert space at each point in phase
space. Hybrid states are positive, p(q,p) > 0 and normalized

[ dadpTrlo(q,p)] =1

Often take classical degrees of freedom to live in a phase space and
will denote them by z

Example
A hybrid qubit with classical position and momentum q, p

o(q, p, t) =( uo(q, p,t) alq,p,t) )

a*(q,p,t) wui(q,p,t)
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CQ state
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Conditions from positivity

Zach weller-davies

The state must be positive, o(q, p) > 0. For the hybrid qubit,
N

_ UO(q: P, t) (l(q:p7 t)
oap.t) = ( a*(q,p,t) ui(q,p.t) ) )

this implies
o(q, p, q)* < wo(q, p, t)ur(q, p, t) (3)

So for coherence, the classical distributions uy(q, p,t), u1(q, p, t)
describing the populations must have overlap.
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CQ state
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This has a somewhat intuitive explanation

Zach weller-davies

p = Tre([)(¥]) =

with o = (E;|ERr), we see interference patterns because the
electromagnetic fields are not orthogonal
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CQ state
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Zach weller-davies

Classical states |E;),|Eg) are perfectly distinguishable, unless they
are probability distributions
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CQ dynamics and Kramers-Moyal Expansion CC
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What kind of dynamics is allowed?

A
4

Zach weller-davies

@ It must preserve the state space
o(q,p) >0, [ dqdpTrlo(q,p)] =1
@ We ask that it be completely positive on the quantum system

CQ dynamics (Oppenheim 2018)- CQ version of Kraus (87)

e+ 0= 3 [ 2.0l 9

v

where positivity demands A*¥(z|z') is a positive matrix for each

z,Z' and
/ dzy A (z|2,6t) 1L, =1

v

N

due to normalization.
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CQ dynamics and Kramers-Moyal Expansion
080000

What kind of dynamics is allowed? continued

Zach weller-davies

Dynamics: o(t) =3_, )\'“’VL#_O'(O)LL
Normalization: Y_ AL L, =1
Positivity: A\ positive matrix

Dynamics: p(z,t) = [dZ’P(z | Z/,t) p(Z,0)
Normalization: [dzP(z|Z') =1
Positivity: P(z|z’) positiva for each z, 2’

Dynamics: o(z,t) = [ dZ/N* (z| 2/, t) Lo (Z,0) L}
Normalization: [dz3,, A" (z |2, t)LL, =1
Positivity: A*“(z|Z', t) positive matrix for each z, Z’
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CQ dynamics and Kramers-Moyal Expansion CC
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Master equation: g—"‘t" = —i[H, o] + h"‘-ﬁLaaLL -3 {haﬁL;Lm J}

Zach weller-davies

Positivity: h*’ positive matrix

Master equation:
o =] dZW (2| 2)p(2) = [ W (2| 2)pl2)

Positivity: §(z,z') 4+ §tW(z|z') positive

Master Equation: (In a basis of Lindblad operators L, = (/, L))

% = /dz'Wﬁw (z | z") Lo (z’) LL = % {/ dz' WH (z" | z) L}L,L#,‘(_)(z)}
Positivity:
W (| o) = [

a positive matrix

§(z,2)+ 0tW% (z| 2/) 6tWO8 (2| Z')
StWO (z | 2) StWeb (z | 2')
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CQ dynamics and Kramers-Moyal Expansion CC
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Kramers-Moyal expansion

@ In classical dynamics we can perform a Kramers-Moyal
expansion of the master equation

= [dw(z12)p(2) - [ W (| 2)p(2

0zn

S ("L D2l 1)
n=1

Dotz) = %/ d7' (7 — 2)" W (Z | 2)

are the moments of the transition amplitude

Zach weller-davies
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CQ dynamics and Kramers-Moyal Expansion CC
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Kramers-Moyal expansion continued

Zach weller-davies

oH oH
Take Dl_‘q = %, D]_jp = _(8_61' Dn22 =0

op

E — {H,p}

Take Dy = p1, Dy = D, Dys3 =0

% _ 2 (@l 0] + 25 [D(@)p(z. )

the Fokker-Plank equation

@ D, characterizes the amount of Hamiltonian evolution in the
system (more precisely the drift)
@ Dy characterizes the amount of diffusion in the system
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CQ dynamics and Kramers-Moyal Expansion CC
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CQ Kramers-Moyal expansion

Zach weller-davies

CQ Kramers-Moyal expansion

89(821; t) _ Z(—l)” (5)2) (BRI ())

n=1

—i[H(2), o(2)] + DEP(2)Lao(2)L, — %Dgﬁ [LLa,o(2)}

3 S () (o @aete )

pr#00 n=1

_|_

Important moments for the talk

o Dgﬁ characterizes the decoherence

o Di" characterizes the Hamiltonian part of the back-reaction
on phase-space (drift)

o D.” characterizes the diffusion (spreading) in the phase-space
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CQ Pawula theorem |
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Main Results

Zach weller-davies

We can use the conditions on positivity to prove the following

e A CQ Pawula theorem: unique (a.s) continuous master
equation, or else one must have infinite moments (jumping)

@ We must have a Decoherence term: For CQ back-reaction,
we must have a decoherence term Dg‘"d. Interaction with a

classical system necessarily causes decoherence

e We must have a Diffusion term D5": Interaction with a
classical system necessarily results in a loss of predictability
on the classical phase space

A trade off between diffusion and decoherence

There is a trade-off between the amount of diffusion and
decoherence: long coherence times require strong diffusion
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n CQ Pawula theorem |
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A CQ Pawula Theorem
CQ Pawula Theorem

For non-trivial CQ evolution, we must have infinitely many
moments in the master equation (specifically, none of the even
moments can vanish), or else the master equation takes the form

n—2 an
= —i[H(z), 0z, )] + Y _(-1)" (07) (D oz ))

=l

(’)Q(Z, t)
ot
0 Ocx t 4
T (91 o(z, t)LQ) + o (
(a7 1 E¥
+ Do‘g(Z)Lag(z)LL = ’ {L;LQ‘ Q(Z)}

D?OLH oz, t))

+

Furthermore, 2Dgg-,- e (DO_1

Oa 0,3*
Dl,fDl.f

)(1‘[3

Important fact for rest of the talk

We must have a decoherence term DS and a diffusion term D4
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A trade-off between decoherence and diffusion

A trade-off between decoherence and diffusion

For all CQ master equations, we derive a trade-off between
decoherence and diffusion depending on the drift in the system

@ Two sources of drift with back-reaction, D?f}, D?f

@ The purely classical diffusion is bounded below by
— 01‘3* . .
2082,- > (DOS)@,B DE,?DL:' (Diosi, 1995)

@ The CQ diffusion term D;j must satisfy the bound
, 2
Yoy ‘B‘.‘i.-? Yoy
> e 2055 Z,@ Dy (z) = )Za Dl,i (Z)I

Zach weller-davies
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A trade-off between decoherence and diffusion

Zach weller-davies

Physical input |

If we want the dynamics to approximately reproduce Hamiltonian
dynamics, we know what the first moment should be! (Oppenheim

2018) |
T (DL Luo(@)L )] = Tr{Hm, )]

e c.f two classical systems (z;, zp) interacting with a H;

op(z1, 20, t
PELZE) (1) + {Hao ) + (M)

@ Integrating out the second system and defining
p(z1) = [ dzp(z1,z2) we get an effective e.o.m

P ()} + [z (Hp(a2)
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Zach weller-davies

Trade-off provides an experimental bound

@ There are experimental upper bounds on the decoherence
rate A
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A trade-off between decoherence and diffusion

A trade-off between decoherence and diffusion

For all CQ master equations, we derive a trade-off between
decoherence and diffusion depending on the drift in the system

@ Two sources of drift with back-reaction, D?ff, D?,g

@ The purely classical diffusion is bounded below by
2D8% > (Dy ) 5 DR3DY" (Diosi, 1995)

@ The CQ diffusion term D;_;"B must satisfy the bound
| 2
Yoy ‘-{3‘.“3 Yoy
3. 2085 55 D52(2) = |, Dgs ()]

@ Trade-off has important consequences!

Zach weller-davies
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Zach weller-davies

Trade-off provides an experimental bound

@ There are experimental upper bounds on the decoherence
rate A

@ Using the physical input that we want the dynamics to

approximately reproduce Hamiltonian dynamics

@ Give us an experimental lower bounds on the amount of
diffusion in the classical system — at a relevant energy scale
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Brief aside on post-quantum gravity

Zach weller-davies

@ In order to study the trade-off in a concrete setting we shall
study a toy model of a non-relativistic quantum field
interacting with a classical Newtonian potential

@ | will therefore give a very brief tour of post-quantum gravity

1 3 ]
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Summary of post-quantum gravity

@ Take classical degrees of freedom to be Riemmanian 3-metric
Z.p and their conjugate momenta 72

o Couple to QM and consider dynamics of the state o(g.p, 7)
in an ADM formalism

@ Can study independence of the dynamics of the lapse and
shift to find Momentum and Hamiltonian constraints
(Oppenheim, ZWD 2011.15112)

Coonstraint /.i‘: M. DN ({9 (4), Hly)o} + (—2CHR™ + =
+2(C®hoB 4 CWPB) L, pLY, — (C22hE + C2WEP) (LY La, 0} +
/,JH,\ M Hu ({0 Hallp)} = C({g™ . Huo})

rad _ popald L (PG
¥ - 2.-.*“”'.1’11'- e “H

2 D, Do) pDye
Y Dyoe( D, D)

b, 0)s + NW T {x Dy MoamC. 0)}s + MoCPaADyoDI(NW™ D 0. )}

+ MyDyNW*C3h D dpDyo] =0

Zach weller-davies
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Newtonian limit - state space

@ We consider the case of a non-relativistic quantum field in a

partially decohered super-position of approximately orthogonal
L), |R)

L/R) = [ &xtuyplx)v ()0

fL(X)fR(X) ~0, lr’)(X) =J @y age
@ Take classical d.o.f to be Newtonian potential ® and its
canonical conjugate 7,
@ The state space is then

. up (d):ﬂ'g, t)
o(®, 7, t) = ( a* (@, g, t)

&

a (P, g, t) )

UR ((]), g, t)

Zach weller-davies
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Positivity constraints on the state

Zach weller-davies

Positivity of the state and gravitational decoherence

By demanding positivity of the CQ state, we can gain insight into

some of the puzzling natures of the Diosi-Penrose decoherence rate
AE
h

AEp = /d3xd3x’ [mL(x) — mr(x)][mL(x") — mg(x')]

[x = X'|

@ Non-local, mass in the left branch interacts with the mass in
the right branch

- . g5
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Positivity bounds coherence

Zach weller-davies

Classical-quantum decoherence rates

We see that we can arrive at the Diosi-Penrose decoherence using
local dynamics. We find it is not a dynamical effect, but instead is
a constraint imposed by demanding that the density matrix be
positive.

up (®,7m5,t) (P, mg,t)

Q(d),?rg,_ t) = ( o (CD-,Tl-g: t) ug (Cb,ﬂ'g, t) ) (6)

At t = 0 we take the marginal distributions for the populations

2
Uy R(®) = N exp [ /d3x(¢(x) — ®/r(x)) ] (7)

2 202

i.e, Gaussian's peaked around the value of the Newtonian potential
®,, dr which satisfies Poisson's equation
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Positivity bounds coherence continued

@ Positivity of the state tells us that at t = 0,
o (P, 7g,0) |2 < up (D, 74, 0) ug (P, 74, 0)

@ For the Gaussian marginal distributions

N {_ / 3 (PL(x) = PR(x))’

v (®, 7, 0)|> <=
‘(}'( Jﬂ-g,O)| —_ 4 exp 40-2

o [ ENLCRHUTE ¢R<x)))2]

52
o If &, satisfy Poisson’s equation k
¢ = —47G | d3x’“|i-:RE:f|,)
/ Px (D1(x) — DR(x))2 ~ / -y [pee(x) — llR(F;)]_[l.t;('X ) — ur(x')]

(8)
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Positivity bounds coherence continued |

Zach weller-davies

Quantum decoherence on classical space-time

@ We see that here DP is not a dynamical decoherence rate.
Instead it is a non-dynamical effect which arises due to
positivity of the density matrix.

@ Gives a bound on the allowed coherence one can prepare: two
masses with very different gravitational fields cannot be
prepared in a coherent superposition.

@ Since it is a condition on the allowed states one is allowed to
prepare the non-locality is less of a problem than if this is a
dynamical effect.

Pirsa: 20120030 Page 30/41



Main results )
0000000000000 80000

@ When we include dynamics, we also have a dynamical
contribution to the decoherence (model dependent)

[ D®D7g|a(®,7g)| = a(t) = %exp [_ / d3x(¢L(X) — dg(x))

Zach weller-davies

8c2

- [- [ o> [A(d’)t(%(;«) ¥ a»R(x))”

N\ /
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Positivity bounds coherence continued

@ Positivity of the state tells us that at t = 0,
o (P, 7g,0) |2 < up (D, 74, 0) ug (P, 74, 0)

@ For the Gaussian marginal distributions

N {_ / 3 (PL(x) = OR(x))’

v (®, 7, 0)|> <=
‘(}'( Jﬂ-g,O)| —_ 4 exp 49-2

o2

o [ ENLCRHUTE ¢R<x)))2]

o If &, satisfy Poisson’s equation
(DL/R - —471‘Gf d3X/HL/R(X)

[x—x]

3 2 3o o) = prO)][p(X") — pr(X)]
_/dXWAﬂ—¢Mn)N/dxdx e .
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@ We take the pure gravity Hamiltonian to be

TG 5 (V ¢)) 2 Zach wdler-t;a.;;;s
/x (_ ?Wg i 47 G

@ The Quantum Hamiltonian is

Hm(®, ¢) = /d3x(1+2¢( Nty := HO + Hy(®)

@ Using the theory of Oppenheim 2018 we consider a master
equation

1
(P), 0} — i [H,?,, gl+m /d3xD0 {Q,‘Q‘U}T —5 {L-!’,‘T-'L-’J, Q}]

o §°
gﬁ+m/zg— (D2p0) n
o, J "on2
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We take the pure gravity Hamiltonian to be

G 5 (V(‘p)z Zach weller-davies

@ The Quantum Hamiltonian is

Hm(®, ¢) = /d3x(1+2¢( Nty := HO + Hy(®)

@ Using the theory of Oppenheim 2018 we consider a master
equation

1
20 (He(@) 0} — i [Hh ]+ m [ 500 [veu' — 3 {ulvc}]

do | 52 .
+2m /d3xz,},—“'c;ﬁ +n /L','ﬁ—z (D2p0) w1+
, ()ﬂ-g ; O?Tg

@ This approximately reproduces the Newtonian interaction

)
Tr[{H;, 0}] = —2m /d3x Tr [L‘ 4'6 ¢ ] , mt(x)(x) = m(x)
. ﬂ-g
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Trade-off between decoherence and diffusion

Zach weller-davies

The drift results in a lower bound for the diffusion in the
momenta conjugate to @, 7,

This results in gravitational kinetic energy production

2 2 2
AE — /d3xGC 7r<7r§> > /d3x2tc Gr|(m(x))]

3 3\

(where X is the decoherence rate and (m(x)) is the
expectation value of the mass density.)

We can get an order of magnitude estimate for the kinetic
energy production from Gerlich et al. 2007

The decoherence rate is A < 107°s~! for clusters of nucleons
of mass 1072% and typical radius r ~ 1072. Taking the
experiment to be conducted on the order of seconds we find
gravitational kinetic energy production

AE ~ 1071, mc® ~ 1078y

Pirsa: 20120030 Page 35/41



Main results )
00000000000000000e

Zach weller-davies

@ Complete positivity gives us a trade-off between decoherence,
drift and diffusion

@ In toy models, this seems to be a very relevant prediction of
treating the gravitational field classically

General lesson

Treating gravity classically leads to diffusion in the gravitational
field which should be experimentally testable — but need to
understand this more generally
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Quantum decoherence in classical space-time

@ We have shown that positivity of the CQ state gives rise to
upper bounds on the coherence.

@ A dynamical term, due to the decoherence term Dy

@ A non-dynamical term, due to positivity of the state, which
gives rise to a Diosi-Penrose like bound
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A trade-off between decoherence and diffusion
We have shown there is a trade-off between decoherence and
diffusion: long coherence times require strong diffusion

In simple toy model of quantum fields interaction with
classical gravity we have seen this is a non-negligible effect
and potentially puts fundamental CQ theories in danger of
running afoul of experimental observations.

Zach weller-davies
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Discussion and future outlook

Zach weller-davies

@ Better understand the validity of the toy model we use, so
that we can strengthen statements and begin thinking about

possible experiments

@ Understand what general lessons can be learned: a lot of the
results rely on complete positivity, are largely independent of
the specifics of the dynamics, and we might expect them to
generalize to the non-Markovian case.

A
¢ olg,mt)

B

plovx,) = ] a7 A% (g,nld, @\ $)Lpld, #')LL

Za
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Discussion and future outlook

Zach weller-davies

@ Better understand the validity of the toy model we use, so
that we can strengthen statements and begin thinking about
possible experiments

@ Understand what general lessons can be learned: a lot of the
results rely on complete positivity, are largely independent of
the specifics of the dynamics, and we might expect them to
generalize to the non-Markovian case.

A
¢ olg,mt)

B

plovw,) = ] a7 A% (g,nld, @\ $)Luplg, #')LL

2o

@ Better understand when can expect the theory to hold as an
effective theory, for example by understanding how we arrive
at the CQ limit.

Pirsa: 20120030 Page 40/41



Pirsa: 20120030 Page 41/41



