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Abstract: In thistalk, | will discuss two problems: quantum data compression
and quantum causal order discovery, both for multipartite quantum
systems. For data compression, we model finitely correlated states as
tensor networks, and design quantum compression agorithms. We first
establish an upper bound on the amount of memory needed to store an
arbitrary state from a given state family. The bound is determined by
the minimum cut of a suitable flow network, and is related to the flow
of information from the manifold of parameters that specify the states
to the physical systemsin which the states are embodied. We then
provide a compression algorithm for general state families, and show
that the algorithm runsin polynomial time for matrix product states.

For quantum causal order discovery, we develop the first efficient
guantum causal order discovery algorithm with polynomial black-box
gueries with respect to the number of systems. We model the causal
order with quantum combs, and our algorithm outputs the order of
inputs and outputs that the given process is compatible with. Our
method guarantees a polynomial running time for quantum combs with a
low Kraus rank, namely processes with low noise and little information
loss. For special cases where the causal order can be inferred from
local observations, we also propose algorithms that have lower query
complexity and only require local state preparation and local
measurements. Our results will provide efficient ways to detect and
optimize available transmission paths in quantum communication
networks, as well as methods to verify quantum circuits and to
discover the latent structure of multipartite quantum systems.
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Quantum Data Compression
ARXIV:1904.06772
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Quantum Memory is Essential ~ + «=

Classically hard problems can be solved efficiently on quantum computers

o Quantum supremacy [Arute et al. (Google) 2019, 54 qubits][Zhong et al. (USTC)
2020, 100-mode optical interferometer]

Harder problems require more memory
o Cracking 2048-bit RSA requires ~20 million qubits [Gidney, Ekera 2019]

Quantum memories are useful but expensive
> Data are encoded in microscopic particles
> They are prone to errors
> They must be handled with extreme care
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Quantum Data Comjpression

Compression: finds the minimal size of memory to carry the information
> Saves memory for guantum computers — more computing power
o Saves bandwidth for exchanging data with servers — more efficient networks

A sequence of pure states [Schumacher, 1993] and mixed states
[Lo, 1995; Horodecki, 1998; Barnum et al. 2001]

Original

data

Encoder |—

Memory or
transmission line

—

Decoder

Recovered
data
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Quantum Data Comjpression

A state family is a set of parameterized states {py}yex © S(Hp) ﬁfﬂ?ﬁiga%

A compression protocol (&, D) consists of two quantum channels: | 7t»
encoder £: S(Hp) = S(Hy) and decoder D: S(Hy) = S(Hp) st

(Do E)(py) = Py, Vx € X

The memory size of the protocol is [log dim H,,| qubits — to be minimized

3 3
Original Encoder [—  MemOyor I pecoder Recovered
data transmission line data
S(Hp) € S(Hu) D S(Hp)
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Review of Results

. h’f ‘!" )

Previous results: only special cases of independent identically prepared (i.i.p.)
states p,‘?n [Plesch & Buzek 2010] [Yang et al. 2016 & 2018]

Result 1: optimal compression of general case i.i.p. states
[Yang, Bai, Chiribella, Hayashi, IEEE Trans. on Information Theory, 2018]

\
@)
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~1/2 logn bits/qubits for each free parameter
Arbitrarily small fraction, but non-zero quantum memory

‘()
O

Page 7/53



Review of Results

Previous results: only special cases of independent identically prepared (i.i.p.)
states p,‘?n [Plesch & Buzek 2010] [Yang et al. 2016 & 2018]

Result 1: optimal compression of general case i.i.p. states
[Yang, Bai, Chiribella, Hayashi, IEEE Trans. on Information Theory, 2018]

Result 2: [Bai, Yang, Chiribella, New Journal of Physics, 2020]

O 000 B» OOMOO

Independent Correlated
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Real Data are Structured

Data that are geometrically closer are usually more correlated

Adjacent pixels have similar colors

Observation: in many physical systems, particles that are geometrically
closer are usually more correlated

The correlations give a certain structure of states that could help
compression — How to model the structure?
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Tensor Networks

A compact way (less parameters) to express multipartite quantum states

Characterize correlation structures between systems by a graph
Allow efficient numerical simulation of states

Model of locally correlated states
o Cluster states

o Matrix product states (MPS) Ty !
> Projected entangled pair states

o Graph states
> Multi-scale entanglement renormalization ansatz
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Tensor Network Notations

Directed graph ¢ = (V, E) such that

- Each edge e € E is assigned a d(e)-
dimensional Hilbert space

Multiplication forms network:

. . _ N - k
- Each vertex v € V is assigned a tensor 4BIv) = ZAiijkvkll) = —AF— B[V
ik
Vectors & operators: . [ 1
Open index - open edge
v = Zvill) ST Higher-order tensors:

L

(@l = )" = ) vilil = —| v K
0 JIe =ZTijk|i>|j><k|
L

[
ij
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Example: Matrix Product States (M

Model of locally correlated states, e.g., AKLT model, 1-d Ising model

A site-independent MPS (SIMPS) with open ﬁ 1 I |
L

boundary conditions is specified by Py Py P

4 A |«
1. n physical systems, each of dimension d,, ‘

2. A correlation system with dimension d,., called the bond dimension

3. Asetofd. xd. matrices {4;}i=1,..q,

4. Two vectors |L), |R), CaII%d the boundary conditions
P

Warr)= ) (ElAy Ay A R, g ey i)

il,...,in=1
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Example: Matrix Product States (N

Model of locally correlated states, e.g., AKLT model, 1-d Ising model

A site-independent MPS (SIMPS) with open /_ 1 1 |
L

boundary conditions is specified by ) P e

4 A |«
1. n physical systems, each of dimension d,, ‘

2. A correlation system with dimension d.., called the bond dimension

3. Asetofd. x d. matrices {4;}i=1,..q,

4. Two vectors |L), |R), caII%d the boundary conditions
P

Warr)= ) (ElAy Ay A R, g ey )

>

il,...,in=1 N
Basis of n-partite system
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MPS as a Tensor Network

|qJALR Z (LlAllA,_z T 1|R)|11:12:--- n?

it =L

Equivalently, we will regard the set of d. x d. matrices {4;};=1,.. .d,, as one order-3
tensor of dimension d,, X d. X d., denoted as A

[a [s i [u [ i

l'IJA'L’R — L < A < A < siedat 14 A + R

Vertical arrows: physical systems, each has dimension d,,

Horizontal arrows: correlation systems, each has dimension d,.
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Tensor Network State Family

A tensor network with| variable

{pr }xeX

and

constant |tensors defines a state family

— : - Tl :
Wy = Ux i T3 i
— : : TZ i >
'________________________: N
One can always regard all [ variable |tensors as one vector |v,.), and all

constant

tensors as a linear operator N, and write |¥,.) = N|v,)
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Theoretical Limit of Compression

One can always map {|¥,) = N|v,)} into a space H,, with

dim H,, = dim Span {|¥,)},ex < rank(N)
> [log dim Span {|¥,)}.ex| is the optimal memory size for exact compression

But computing the linear span or rank(N) is infeasible
> Lengths of vectors grows exponentially with number of particles
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Theoretical Limit of Compression

One can always map {|¥,) = N|v,)} into a space H,, with

dim H,, = dim Span {|¥,)},ex < rank(N)
> [log dim Span {|¥,)}.ex]| is the optimal memory size for exact compression

But computing the linear span or rank(N) is infeasible
> Lengths of vectors grows exponentially with number of particles

One can exploit the tensor network structure to
o Estimate optimal memory size
o Build efficient compression protocols
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Information Flow in Tensor Networks
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Tensor Network = Flow Network

Information “flows” in the network like a fluid from the source of the
parameters (variable tensors) to the sink of output physical systems

Define the capacity of an edge e as c(e) = log d(e)

o d(e)-dimensional Hilbert space can carry at most log d(e) qubits of information

A flow assigns a number f(e) to each edge s.t.

-0 < f(e) <c(e)

- Sum of flow going in = sum of flow going out, for each vertex except source/sink

——————————————————————————

Parameter x; - o T,

" Information

System #2

,,,,,,,,,,,,,,,,,,,,,,,,,,
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f(e)

Legend: —
c(e)
Value of flow in the network
= total flow leaving the source
=log3 +log4

Page 19/53



The Cut Bottlenecks the Flow

A cut is a bipartition of the network s.t. the source and sink are on different
sides

The capacity of a cut is the sum of capacities of edges crossing the cut
The minimum cut is the “bottleneck” of information flow, so

minimum capacity of cuts > maximum value of flows
* In fact, min-cut = max-flow by Max-Flow Min-Cut Theorem

1

————————————————————————————— log 3 1 log 3 log2

Parameter x; T, K > » System #1 . Legend: _,f 2 8
| log 5 ! log 3 log2 | | Dend: c(e)
" Information source F---- : oy ' Information sink | Capacity of cut = log 3 + log 4
| ~ log4 : log 4 log6 | = value of flow =log 3 + log 4

Parameter x, Ll T, > » System #2 |
oo 2 log4y log 5 log7 b |

Pirsa: 20120021 Page 20/53



Quantum Max-Flow Min-Cut

The memory size of the optimal compression scheme is hard to determine
> Naive way requires exponential computing time due to exponential # parameters

The minimum cut of the network is efficiently computable

o The optimal memory size to encode the states ~ the “flow of information” from
parameters to systems < the minimum cut of the network

Theorem 1 (optimal memory size).
For a tensor network state family {|W,) = N|v,)},

optimal memory size < min-cut
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Example: SIMPS

A general n-partite SIMPS where all tensors are variable

WaLr) = Li—HAT14A[— A [
n repetitions of the same tensor/
Symmetry Tensor network I I I I
transformations
’ 16
didp_di i
n dimensional vector s, — Vs
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Minimum cut
=nlogd,

Constant

Constant
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Example: SIMPS

A general n-partite SIMPS where all tensors are variable

T -_:I_—:_—_—_::1—.—_—_::_—_—_—_:_—_—_—]—_: __________________ Minimum cut

3 . =nlogd
(Warr) = L4 Af— a4} R 4
n repetitions of the same tensor/ 4 N 4
Y I I AP I Constant [ Minimum cut
Svymmetr ensor ne Wor o — - - q2
Y Y transformations 1 ; dzdplogn +
’ . ~ R 2log d,
I I
n?é% dimensional vector S, v ! Constant

Nzl S i

| |

_____________________________

By Theorem 1, |¥,,.,z) can be compressed into [dZd,logn + 2 log d.| qubits
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Summary of Implications

Memory to encode n-partite SIMPS ~ Rediscovers holographic compression
= 0(logn) [Wilming & Eisert, 2019]: memory to
encode locally interacting particles in

Generalization of independent a region of a lattice « the perimeter of
identically prepared (i.i.p.) case by the region

allowing entanglement 0-0-0-0-0
.... | The perimeter
..‘. : is the min-cut
00000

Exponential Quadratic

> 0(n) qubits

0(n) qubits > O(logn) qubits  0(n?) qubits

memory reduction memory reduction
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Efficient Compression Algorithm 4.

We propose an efficient compression algorithm based on quantum machine
learning & tensor networks

Theorem 2 (efficient compression algorithm).

Our algorithm achieves optimal compression and runs on a quantum
computer in poly(n) time for any MPS family of length n compressible
within O(log(n)) qubits (which can be checked with Theorem 1)

Efficiency for general case is given by a set of sufficient conditions
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summary

Quantum memory

is expensive =i Real data are structured
. h
Efficiently
—|  computable Model structure of quantum data as a network
memory bounds
g L
Compression: — Optimal memory size < min-cut of network

minimize memory
size to carry the
information

_ Reaches optimal memory size
Efficient

— compression
algorithm

Runs in polynomial time for MPS families
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Future Directions

Exact compression — approximate compression
o For i.i.p. states, allowing a small error saves a lot of memory [Yang, et al. 2016]

> Allowing error grants better efficiency and memory cost for correlated states?

State compression — gate compression

Where Uy, is a smaller

_ I — I !
— Uy = - e Uy Decoder [ gate than U,

Encoder

Aux. system

> Reduces transmission cost for cloud computing
o Solved for “i.i.p.” unitary gates U®™ [Chiribella et al. 2015]
> Deal with correlated multipartite gates with tensor networks & machine learning?
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Quantum Causal Order Discovery
ARXIV: 2012.01731
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=
Network Structural Changes b

In a quantum network, data are transmitted via multiple intermediate nodes
Change of availability of nodes — Change of network structure
Which paths are accessible? — Discovery of causal structure

__________________ +é B&
[ o

Al/v

B,
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Causal Order Discovery

Each event is an operation or an observation

Operation A is before observation B = A may affect B
Operation A4 is after observation B = A must not affect B

Given access to operations and observations, decide
the order of the events = the path of the particle

Time

—®
(ST %) L3 Iy b1 Uy

OperateJ' IObserve OperateJ' IObserve OperateJ' IObserve
o—o o—0 o
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Quantum Comb

Any causally ordered quantum process can be represented as a quantum comb, which is a
channel written as n channels connected with memory wires [Chiribella, DAriano, P Perinotti, PRL 2008]

Each of sub-channels C4, ..., C,, is called a tooth of the comb

Ay B, Input wire  Qutput wire
& Al Bl + Az BZ An Bn
C . - C1 62 en
A'ﬂ, Bn [ Ml . M2 Mﬂ.—l
T Memory wire T
First tooth Last tooth

It has a causal order: A; only affects outputs B; with i < j
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Quantum Comb

Any causally ordered quantum process can be represented as a quantum comb, which is a
channel written as n channels connected with memory wires [Chiribella, DAriano, P Perinotti, PRL 2008]

Each of sub-channels C4, ..., C,, is called a tooth of the comb

Ay B, Input wire  Qutput wire
& Al Bl + Az BZ An Bn
C . - C1 62 en
A'ﬂ, Bn [ Ml . M2 Mﬂ.—l
T Memory wire T
First tooth Last tooth

It has a causal order: A; only affects outputs B; with i < j
¢ € Comb[(44, B,), ..., (4,,, B,,)] © C is compatible with causal order (4, By), ..., (4,, B,,)
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Problem Formulation - Informal

Given black-box access to a channel € with n input wires and n output wires

Goal: Determine which causal structure it is compatible with

C may have one of many possible causal structures
= At most (n!)? for all possible permutations of inputs and outputs

Ay B, A, B, | A B, A, B,
A, B ¢y Cz ¢ C;
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Problem Formulation

Input: black-box access to a quantum channel € with input wires 45, ..., 4,, and
output wires By, ..., B, satisfying € € Comb|(4,7 (1), Bx'(1))s - (Ae’ () Br(my) |-
where ¢’ and '’ are unknown permutations.

Output: permutations ¢ and m such that C is (approximately) equal to a quantum
comb D € Comb|(4s (1), Bx(1))s -» (Asn), Bzy)]. o () and ¢’ (') do not have to

be the same.
Al Bl
A1) Br(1) As(2) Br(2) Ao (n) Br(n)
C ~ & & e,
Ay B,
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Related Works

Non-scalable special cases of causal order discovery:
o Two optical modes [Ried et al. 2015]
o Two candidate paths [Chiribella & Ebler, 2019]

Causal order discovery given classical description of the process
[Giarmatzi and Costa, 2018]

o Classical description can be obtained via e.g., process tomography - inefficient

Our work: general case, black-box, efficient
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Problem Formulation

Input: black-box access to a quantum channel € with input wires 45, ..., 4,, and
output wires By, ..., B, satisfying € € Comb|(4,/ (1), Bx'(1))s - (Ae’ () Bz () |-
where ¢’ and '’ are unknown permutations.

Output: permutations ¢ and m such that C is (approximately) equal to a quantum
comb D € Comb|(4s (1), Bz1))s -» (Asn), Bzy)]. o () and ¢’ (') do not have to

be the same.
Al Bl
A1) Br(1) As(2) Br(2) Ao (n) Br(n)
C ~ & & e,
Ay B,
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Related Works

Non-scalable special cases of causal order discovery:
o Two optical modes [Ried et al. 2015]
o Two candidate paths [Chiribella & Ebler, 2019]

Causal order discovery given classical description of the process
[Giarmatzi and Costa, 2018]

o Classical description can be obtained via e.g., process tomography - inefficient

Our work: general case, black-box, efficient
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Results

We devise the first efficient algorithm for quantum causal order discovery

Query complexity (number of black-box accesses to €) = poly(n)

1. Algorithm 1: general causal orders
o A quantum way to observe multiple systems simultaneously

> Efficient for combs composed of fixed-sized unitary gates
o Unitary interactions with a fixed-sized quantum system

2. Algorithms 2 & 3: special cases
o Low query complexity — as low as 0(log(n))

> Use local state preparation and local measurements
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Algorithm 1. General Causal Orders
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Criteria for Quantum Comb

If A, is the last input, then it can affect nothing except the last output

Proposition 1 [Chiribella, DAriano, P. Perinotti, PRL 2008]. Let C be the Choi state
of a channel C. (A,, By) is the last tooth if and only if

CayonBey = CapyBay @ la, /da,
/

Marginal state on systems except B,, —l

As(1) Bra) Ao Br2) Ax By e
e, c, | e, |

:

A |

| |

S S VU |

Independent
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Testing the Last Tooth
Last Tooth — Constant Channel

(A, B,) is the last tooth < A, affects nothing except the last output B,

< The following is a constant channel

A1~Ayx_4

+

Maximally entangled states ? %
Az B
CAX—)Aix,Biy = C z ]

By+1~Bn

q)+
Axi1~An
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Testing the Last Tooth

SWAP TeSt [Buhrman, et al. PRL 2001]

A quantum circuit that estimates the overlap Tr[pa] given copies of p and o

Controlled-SWAP gate

__________________

) =1 {+51-)

p —— — W
| SWAP | | —
o : U Probability of |+) is (1 + Tr[pa])/2

Run this circuit N times, and approximate Tr|[ IS

number of runs with outcome |+)

Pirsa: 20120021 Page 42/53



N

Testing the Last Tooth
Test of Constant Channel

To decide whether C(p) is a constant channel, we check whether the
outputs are different on different inputs

1. Pick an “informationally complete” set of input states {y,} | (¥a} is informationally
complete if every

2. Apply € on each of them, let p, = C(¥,) be the output operator X can be written

- _ as X = ), ¢, for some
3. For eachza, compare p, with p; - use SWAP tests complex numbers {o,)
“lpa = pallz = Trlpapel + Trlpips| — 2Tr[pepy]

Y ¢
Hilbert-Schmidt distance || X||, = v Tr[XTX] Estimate each term with SWAP test

4. Decide C to be a constant channel if all distances are small

Recall: constant channel & last tooth
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Assumption: Unitary Sub-Channe.,

Assumption 1. € consists of unitary interactions with a fixed-sized system:
o Y, Is a pure state, U4, U,, ..., U,, are unitary gates
> All dimensions of input and output wires are the same dy, = - =dy =dp, =+ =
dBn =i dy

> All dimensions of the memory wires are the same dy,, = - =dy, =: dy

Does not break generality: any quantum comb can be written as concatenation of
unitary gates with large enough d,, [Barrett, Lorenz, Oreshkov 2019]

Aq B,
_ _ As(1) Br(1) As(2) Br2) Ag(n) Brmn
C : B 7 U,y U, Uy, =
0 I
A B C M]. M2 Mn—l M}"l
r d r r
Initial memory state Final state discarded
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N

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

A1) Br(1) Ag(2) Br(2) Ag(n) Br(n) -y
rank | G Un—1 U, | =
M, M,_, M, M,
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N

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

A1) Br(1) Ag(2) Br(2) Ag(n) Br(n) oy
rank @_ U, U1 U, = | = M
M, M,_, M, M,

lgnoring last tooth (feed the input with maximally mixed state, and discard the
output), one still has
Aa(l) Bﬂ:(l) Aa(z) Bﬂ:(z) “46{:?1;‘ . Bﬂ'{n.‘]

Up-1 =

rank U
Yo 1
G M, M, _, M,,_4 M,
e ~ =
(n — 1)-comb satisfying Assumption 1

< dy
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N

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

A1)

rank @

Uy

Bﬂ:(l)

M,

Aa(z)

M, _,

Up-1

Bro

Aa(n)

Un

My

B (n)

M,

Ilgnoring last tooth (feed the input with maximally mixed state, and discard the
output), one still has

A1)

rank @

S

Uy

Br)

M,

M,

As(2)

Up-1

B2

A o(n)

My

=
Ul

_/
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_
(n — 1)-comb satisfying Assumption 1

The efficiency of testing constant channels depends on the rank of the channel
The Kraus rank not growing with the execution of algorithm ensures efficiency

e

VRS
T S d
a0 |
| i’

M
+ A}‘n
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N

Main Algorithm
Recursively Find the Last Tooth

Once we find the last tooth, we ignore it, and the rest is a (n — 1)-tooth comb

Recursively find the last tooth of the (n — 1)-tooth comb

Algorithm 1. findlast(C)

1. If € has only one tooth, output the tooth and exit

2. Enumerate all possible (Ay, B,,)

until 4, 4., is a constant channel I Namely (4, By) is the last tooth
3. Run findla St(CA;tx_)B;ty) % The channel by ignoring A, and B,,
4. Output (4,, By) 91 Append (4, By) to the end of the output
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N

Main Algorithm .
Accuracy and Complexity

Theorem. Under Assumption 1, with probability 1 — x,, Algorithm 1
outputs a causal order (Ag 1y, Br(1)), - (Ag(ny Breny) SUCh that

D € Comb[(AJ(l), Bn’(l)): p—— (Aa(n)f Bn(n))]' |C — D1 < &

with number of queries to C in the order of T dtars
N=0 (n“dﬁzdﬁegslog(ndAK(}l)) between Choi states
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Algorithms with Local Observatio's-

We devise a subroutine that computes a Boolean matrix ind;; s.t.
ind;; = true & input wire A; and output wire B; are (approximately) independent

It uses only local state preparation and local measurements with query complexity
N=0 (dﬁdgxr;?nlog(nd,qdax‘l))
> dg, dg — dimension of each input/output wire
° n — number of teeth
o 1 — k — success probability
° ¥min — correlation threshold, below this is considered independent

Logarithmic in n
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summary

The first efficient algorithm that discovers general quantum causal orders
o Discover data transmission paths in quantum networks / trajectories of particles
> Check the input-output correlations of quantum circuits, as a verification technique
o Discover the latent structure of multipartite quantum systems

> E.g., for efficient compression [Bai et al. NJP 2020] and efficient tomography [Cramer et al.
Nat. Comm. 2010] of them

Algorithm 1: general causal order
o Efficient for combs consisting of fixed-sized unitary gates

Algorithms 2 & 3: special cases
o Easier to implement: use local state preparation and local measurements
o More efficient: query complexity logarithmic in n
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Future Directions

A more informative causal structure than the comb?
> E.g., a directed acyclic graph to describe causal structure (causal graph)

Our algorithms do not efficiently solve all possible cases
> E.g., combs with an exponentially large memory
o The most general case is also difficult for classical causal order discovery
> New problem formulation needed

A probabilistically approximately correct (PAC) algorithm?
> Answer is “correct” as long as a limited-power verifier cannot disprove it

> Quantum PAC learning of causal structure?
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