Title: Efficient Data Compression and Causal Order Discovery for Multipartite Quantum Systems

Speakers: Ge Bai

Series: Perimeter Institute Quantum Discussions
Date: December 09, 2020-9:30 AM
URL: http://pirsa.org/20120021
Abstract: In this talk, I will discuss two problems: quantum data compression and quantum causal order discovery, both for multipartite quantum systems. For data compression, we model finitely correlated states as tensor networks, and design quantum compression algorithms. We first establish an upper bound on the amount of memory needed to store an arbitrary state from a given state family. The bound is determined by the minimum cut of a suitable flow network, and is related to the flow of information from the manifold of parameters that specify the states to the physical systems in which the states are embodied. We then provide a compression algorithm for general state families, and show that the algorithm runs in polynomial time for matrix product states.

For quantum causal order discovery, we develop the first efficient quantum causal order discovery algorithm with polynomial black-box queries with respect to the number of systems. We model the causal order with quantum combs, and our algorithm outputs the order of inputs and outputs that the given process is compatible with. Our method guarantees a polynomial running time for quantum combs with a low Kraus rank, namely processes with low noise and little information loss. For special cases where the causal order can be inferred from local observations, we also propose algorithms that have lower query complexity and only require local state preparation and local measurements. Our results will provide efficient ways to detect and optimize available transmission paths in quantum communication networks, as well as methods to verify quantum circuits and to discover the latent structure of multipartite quantum systems.

Efficient Data Compression \& Causal Order Discovery for Multipartite Quantum Systems

Ge Bai, Quantum Information \& Computation Initiative (QICI), Dept. of Computer Science, The University of Hong Kong

Quantum Data Compression

ARXIV: 1904.06772

Quantum Memory is Essential

Classically hard problems can be solved efficiently on quantum computers

- Quantum supremacy [Arute et al. (Google) 2019, 54 qubits][Zhong et al. (USTC) 2020, 100-mode optical interferometer]

Harder problems require more memory

- Cracking 2048-bit RSA requires ~20 million qubits [Gidney, Ekerå 2019]

Quantum memories are useful but expensive

- Data are encoded in microscopic particles
- They are prone to errors
- They must be handled with extreme care

Quantum Data Compression

Compression: finds the minimal size of memory to carry the information

- Saves memory for quantum computers - more computing power
- Saves bandwidth for exchanging data with servers - more efficient networks

A sequence of pure states [Schumacher, 1993] and mixed states [Lo, 1995; Horodecki, 1998; Barnum et al. 2001]

Quantum Data Compression

A state family is a set of parameterized states $\left\{\rho_{x}\right\}_{x \in \mathbf{X}} \subset S\left(\mathcal{H}_{P}\right)$
A compression protocol $(\mathcal{\varepsilon}, \mathcal{D})$ consists of two quantum channels: encoder $\mathcal{E}: S\left(\mathcal{H}_{P}\right) \rightarrow S\left(\mathcal{H}_{M}\right)$ and decoder $\mathcal{D}: S\left(\mathcal{H}_{M}\right) \rightarrow S\left(\mathcal{H}_{P}\right)$ s.t

$$
(\mathcal{D} \circ \mathcal{E})\left(\rho_{x}\right)=\rho_{x}, \quad \forall x \in \mathbf{X}
$$

The memory size of the protocol is $\left\lceil\log \operatorname{dim} \mathcal{H}_{M}\right\rceil$ qubits - to be minimized

Review of Results

Previous results: only special cases of independent identically prepared (i.i.p.) states $\rho_{x}^{\otimes n}$ [Plesch \& Buzek 2010] [Yang et al. 2016 \& 2018]
Result 1: optimal compression of general case i.i.p. states
[Yang, Bai, Chiribella, Hayashi, IEEE Trans. on Information Theory, 2018]

Arbitrarily small fraction, but non-zero quantum memory

Review of Results

Previous results: only special cases of independent identically prepared (i.i.p.) states $\rho_{x}^{\otimes n}$ [Plesch \& Buzek 2010] [Yang et al. 2016 \& 2018]
Result 1: optimal compression of general case i.i.p. states
[Yang, Bai, Chiribella, Hayashi, IEEE Trans. on Information Theory, 2018]

Result 2: [Bai, Yang, Chiribella, New Journal of Physics, 2020]

Independent

Correlated

Real Data are Structured

Data that are geometrically closer are usually more correlated

Adjacent pixels have similar colors
Observation: in many physical systems, particles that are geometrically closer are usually more correlated
The correlations give a certain structure of states that could help compression - How to model the structure?

Tensor Networks

A compact way (less parameters) to express multipartite quantum states
Characterize correlation structures between systems by a graph
Allow efficient numerical simulation of states
Model of locally correlated states

- Cluster states
- Matrix product states (MPS)
- Projected entangled pair states
- Graph states

- Multi-scale entanglement renormalization ansatz

Tensor Network Notations

Directed graph $G=(V, E)$ such that

- Each edge $e \in E$ is assigned a $d(e)$ dimensional Hilbert space
- Each vertex $v \in V$ is assigned a tensor

Vectors \& operators:

$$
\begin{aligned}
& |v\rangle=\sum_{i} v_{i}|i\rangle=\longleftarrow v \\
& \langle\bar{v}|=|v\rangle^{T}=\sum_{i} v_{i}\langle i|=\longrightarrow v \\
& A=\sum_{i, j} A_{i j}|i\rangle\langle j|=\longleftarrow A
\end{aligned}
$$

Multiplication forms network:

Higher-order tensors:

$$
\stackrel{\dagger_{i}^{i}}{T_{T}} \cdot \frac{k}{*}=\sum_{i, j, k} T_{i j k}|i\rangle|j\rangle\langle k|
$$

Model of locally correlated states, e.g., AKLT model, 1-d Ising model A site-independent MPS (SIMPS) with open boundary conditions is specified by

1. n physical systems, each of dimension d_{p}

2. A correlation system with dimension d_{c}, called the bond dimension
3. A set of $d_{c} \times d_{c}$ matrices $\left\{A_{i}\right\}_{i=1, \ldots, d_{p}}$
4. Two vectors $|L\rangle,|R\rangle$, called the boundary conditions

$$
\left|\Psi_{A, L, R}\right\rangle:=\sum_{i_{1}, \ldots, i_{n}=1}^{d_{p}}\langle\bar{L}| A_{i_{1}} A_{i_{2}} \ldots A_{i_{n}}|R\rangle\left|i_{1}, i_{2}, \ldots, i_{n}\right\rangle
$$

Example: Matrix Product States (Nrmani

Model of locally correlated states, e.g., AKLT model, 1-d Ising model A site-independent MPS (SIMPS) with open boundary conditions is specified by

1. n physical systems, each of dimension d_{p}

2. A correlation system with dimension d_{c}, called the bond dimension
3. A set of $d_{c} \times d_{c}$ matrices $\left\{A_{i}\right\}_{i=1, \ldots, d_{p}}$
4. Two vectors $|L\rangle,|R\rangle$, called the boundary conditions

$$
\left|\Psi_{A, L, R}\right\rangle:=\sum_{i_{1}, \ldots, i_{n}=1}^{d_{p}}\langle\bar{L}| A_{i_{1}} A_{i_{2}} \ldots A_{i_{n}}|R\rangle|\underbrace{\left.i_{1}, i_{2}, \ldots, i_{n}\right\rangle}_{\text {Rasis of } n \text {-nartite }}\rangle
$$

MPS as a Tensor Network

$$
\left|\Psi_{A, L, R}\right\rangle:=\sum_{i_{1}, \ldots, i_{n}=1}^{d_{p}}\langle\bar{L}| A_{i_{1}} A_{i_{2}} \ldots A_{i_{n}}|R\rangle\left|i_{1}, i_{2}, \ldots, i_{n}\right\rangle
$$

Equivalently, we will regard the set of $d_{c} \times d_{c}$ matrices $\left\{A_{i}\right\}_{i=1, \ldots, d_{p}}$ as one order-3 tensor of dimension $d_{p} \times d_{c} \times d_{c}$, denoted as A

Vertical arrows: physical systems, each has dimension d_{p} Horizontal arrows: correlation systems, each has dimension d_{c}

Tensor Network State Family

A tensor network with variable and constant tensors defines a state family $\left\{\Psi_{x}\right\}_{x \in \mathbf{X}}$

One can always regard all variable tensors as one vector $\left|v_{x}\right\rangle$, and all constant tensors as a linear operator N, and write $\left|\Psi_{x}\right\rangle=N\left|v_{x}\right\rangle$

Theoretical Limit of Compression

One can always map $\left\{\left|\Psi_{x}\right\rangle=N\left|v_{x}\right\rangle\right\}$ into a space \mathcal{H}_{M} with

$$
\operatorname{dim} \mathcal{H}_{M}=\operatorname{dim} \operatorname{Span}\left\{\left|\Psi_{x}\right\rangle\right\}_{x \in \mathbf{X}} \leq \operatorname{rank}(N)
$$

$\circ\left[\log \operatorname{dim} \operatorname{Span}\left\{\left|\Psi_{x}\right\rangle\right\}_{x \in \mathrm{X}} \mid\right.$ is the optimal memory size for exact compression
But computing the linear span or $\operatorname{rank}(N)$ is infeasible

- Lengths of vectors grows exponentially with number of particles

Theoretical Limit of Compression

One can always map $\left\{\left|\Psi_{x}\right\rangle=N\left|v_{x}\right\rangle\right\}$ into a space \mathcal{H}_{M} with

$$
\operatorname{dim} \mathcal{H}_{M}=\operatorname{dim} \operatorname{Span}\left\{\left|\Psi_{x}\right\rangle\right\}_{x \in \mathbf{X}} \leq \operatorname{rank}(N)
$$

- $\left[\log \operatorname{dim} \operatorname{Span}\left\{\left|\Psi_{x}\right\rangle\right\}_{x \in \mathrm{X}}\right\rceil$ is the optimal memory size for exact compression

But computing the linear span or $\operatorname{rank}(N)$ is infeasible

- Lengths of vectors grows exponentially with number of particles

One can exploit the tensor network structure to

- Estimate optimal memory size
- Build efficient compression protocols

Information Flow in Tensor Networks

Tensor Network \rightarrow Flow Network

Information "flows" in the network like a fluid from the source of the parameters (variable tensors) to the sink of output physical systems
Define the capacity of an edge e as $c(e)=\log d(e)$

- $d(e)$-dimensional Hilbert space can carry at most $\log d(e)$ qubits of information

A flow assigns a number $f(e)$ to each edge s.t.

- $0 \leq f(e) \leq c(e)$
- Sum of flow going in = sum of flow going out, for each vertex except source/sink

The Cut Bottlenecks the Flow

A cut is a bipartition of the network s.t. the source and sink are on different sides
The capacity of a cut is the sum of capacities of edges crossing the cut
The minimum cut is the "bottleneck" of information flow, so

$$
\text { minimum capacity of cuts } \geq \text { maximum value of flows }
$$

- In fact, min-cut = max-flow by Max-Flow Min-Cut Theorem

Quantum Max-Flow Min-Cut

The memory size of the optimal compression scheme is hard to determine

- Naïve way requires exponential computing time due to exponential \# parameters

The minimum cut of the network is efficiently computable

- The optimal memory size to encode the states \sim the "flow of information" from parameters to systems \leq the minimum cut of the network

Theorem 1 (optimal memory size).
For a tensor network state family $\left\{\left|\Psi_{x}\right\rangle=N\left|v_{x}\right\rangle\right\}$,
optimal memory size \leq min-cut

Example: SIMPS

A general n-partite SIMPS where all tensors are variable

$$
\left|\Psi_{A, L, R}\right\rangle=\Delta L A A B A-A=A
$$

n repetitions of the same tensor

Example: SIMPS

A general n-partite SIMPS where all tensors are variable
n repetitions of the same tensor

By Theorem 1, $\left|\Psi_{A, L, R}\right\rangle$ can be compressed into $\left\lceil d_{c}^{2} d_{p} \log n+2 \log d_{c}\right\rceil$ qubits

Summary of Implications

Memory to encode n-partite SIMPS $=O(\log n)$
Generalization of independent identically prepared (i.i.p.) case by allowing entanglement

$O(n)$ qubits $\xrightarrow[\text { memory reduction }]{\text { Exponential }} O(\log n)$ qubits

Rediscovers holographic compression [Wilming \& Eisert, 2019]: memory to encode locally interacting particles in a region of a lattice α the perimeter of the region

$O\left(n^{2}\right)$ qubits $\xrightarrow[\text { memory reduction }]{\text { Quadratic }} O(n)$ qubits

Efficient Compression Algorithm

We propose an efficient compression algorithm based on quantum machine learning \& tensor networks

Theorem 2 (efficient compression algorithm).
Our algorithm achieves optimal compression and runs on a quantum computer in poly (n) time for any MPS family of length n compressible within $O(\log (n))$ qubits (which can be checked with Theorem 1)

Efficiency for general case is given by a set of sufficient conditions

Summary

Future Directions

Exact compression \rightarrow approximate compression

- For i.i.p. states, allowing a small error saves a lot of memory [Yang, et al. 2016]
- Allowing error grants better efficiency and memory cost for correlated states?

State compression \rightarrow gate compression

- Reduces transmission cost for cloud computing
- Solved for "i.i.p." unitary gates $U^{\otimes n}$ [Chiribella et al. 2015]
- Deal with correlated multipartite gates with tensor networks \& machine learning?

Quantum Causal Order Discovery

ARXIV: 2012.01731

Network Structural Changes

In a quantum network, data are transmitted via multiple intermediate nodes
Change of availability of nodes \rightarrow Change of network structure Which paths are accessible? - Discovery of causal structure

Causal Order Discovery

Each event is an operation or an observation

Operation A is before observation $B \Rightarrow$
Operation A is after observation $B \Rightarrow$
A may affect B
A must not affect B

Given access to operations and observations, decide the order of the events \Rightarrow the path of the particle

Quantum Comb

Any causally ordered quantum process can be represented as a quantum comb, which is a channel written as n channels connected with memory wires [Chiribella, DAriano, P. Perinotti, PRL 2008]
Each of sub-channels $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ is called a tooth of the comb

First tooth
Last tooth
It has a causal order: A_{i} only affects outputs B_{j} with $i \leq j$

Quantum Comb

Any causally ordered quantum process can be represented as a quantum comb, which is a channel written as n channels connected with memory wires [Chiribella, DAriano, P. Perinotti, PRL 2008]
Each of sub-channels $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ is called a tooth of the comb

It has a causal order: A_{i} only affects outputs B_{j} with $i \leq j$
$\mathcal{C} \in \operatorname{Comb}\left[\left(A_{1}, B_{1}\right), \ldots,\left(A_{n}, B_{n}\right)\right] \Leftrightarrow \mathcal{C}$ is compatible with causal order $\left(A_{1}, B_{1}\right), \ldots,\left(A_{n}, B_{n}\right)$

Problem Formulation - Informal

Given black-box access to a channel \mathcal{C} with n input wires and n output wires
Goal: Determine which causal structure it is compatible with
\mathcal{C} may have one of many possible causal structures

- At most $(n!)^{2}$ for all possible permutations of inputs and outputs

Problem Formulation

Input: black-box access to a quantum channel \mathcal{C} with input wires A_{1}, \ldots, A_{n} and output wires B_{1}, \ldots, B_{n} satisfying $\mathcal{C} \in \operatorname{Comb}\left[\left(A_{\sigma^{\prime}(1)}, B_{\pi^{\prime}(1)}\right), \ldots,\left(A_{\sigma^{\prime}(n)}, B_{\pi^{\prime}(n)}\right)\right]$, where σ^{\prime} and π^{\prime} are unknown permutations.

Output: permutations σ and π such that \mathcal{C} is (approximately) equal to a quantum $\operatorname{comb} \mathcal{D} \in \operatorname{Comb}\left[\left(A_{\sigma(1)}, B_{\pi(1)}\right), \ldots,\left(A_{\sigma(n)}, B_{\pi(n)}\right)\right] . \sigma(\pi)$ and $\sigma^{\prime}\left(\pi^{\prime}\right)$ do not have to be the same.

Related Works

Non-scalable special cases of causal order discovery:

- Two optical modes [Ried et al. 2015]
- Two candidate paths [Chiribella \& Ebler, 2019]

Causal order discovery given classical description of the process [Giarmatzi and Costa, 2018]

- Classical description can be obtained via e.g., process tomography - inefficient

Our work: general case, black-box, efficient

Problem Formulation

Input: black-box access to a quantum channel \mathcal{C} with input wires A_{1}, \ldots, A_{n} and output wires B_{1}, \ldots, B_{n} satisfying $\mathcal{C} \in \operatorname{Comb}\left[\left(A_{\sigma^{\prime}(1)}, B_{\pi^{\prime}(1)}\right), \ldots,\left(A_{\sigma^{\prime}(n)}, B_{\pi^{\prime}(n)}\right)\right]$, where σ^{\prime} and π^{\prime} are unknown permutations.

Output: permutations σ and π such that \mathcal{C} is (approximately) equal to a quantum $\operatorname{comb} \mathcal{D} \in \operatorname{Comb}\left[\left(A_{\sigma(1)}, B_{\pi(1)}\right), \ldots,\left(A_{\sigma(n)}, B_{\pi(n)}\right)\right] . \sigma(\pi)$ and $\sigma^{\prime}\left(\pi^{\prime}\right)$ do not have to be the same.

Related Works

Non-scalable special cases of causal order discovery:

- Two optical modes [Ried et al. 2015]
- Two candidate paths [Chiribella \& Ebler, 2019]

Causal order discovery given classical description of the process [Giarmatzi and Costa, 2018]

- Classical description can be obtained via e.g., process tomography - inefficient

Our work: general case, black-box, efficient

Results

We devise the first efficient algorithm for quantum causal order discovery
Query complexity (number of black-box accesses to \mathcal{C}) $=\operatorname{poly}(n)$

1. Algorithm 1: general causal orders

- A quantum way to observe multiple systems simultaneously
- Efficient for combs composed of fixed-sized unitary gates
- Unitary interactions with a fixed-sized quantum system

2. Algorithms 2 \& 3: special cases

- Low query complexity - as low as $O(\log (n))$
- Use local state preparation and local measurements

Algorithm 1: General Causal Orders

Criteria for Quantum Comb

If A_{x} is the last input, then it can affect nothing except the last output
Proposition 1 [Chiribella, DAriano, P. Perinotti, PRL 2008]. Let C be the Choi state of a channel \mathcal{C}. $\left(A_{x}, B_{y}\right)$ is the last tooth if and only if

Testing the Last Tooth

 Last Tooth \rightarrow Constant Channel$\left(A_{x}, B_{y}\right)$ is the last tooth $\Leftrightarrow A_{x}$ affects nothing except the last output B_{y}
\Leftrightarrow The following is a constant channel

Testing the Last Tooth SWAP Test [Buhrman, et al. PRL 2001]

A quantum circuit that estimates the overlap $\operatorname{Tr}[\rho \sigma]$ given copies of ρ and σ

Run this circuit N times, and approximate $\operatorname{Tr}[\rho \sigma]$ with $\frac{2 N_{+}-N}{N}$, where N_{+}is number of runs with outcome $|+\rangle$

Testing the Last Tooth Test of Constant Channel

To decide whether $\mathcal{C}(\rho)$ is a constant channel, we check whether the outputs are different on different inputs

1. Pick an "informationally complete" set of input states $\left\{\psi_{\alpha}\right\}$
2. Apply \mathcal{C} on each of them, let $\rho_{\alpha}:=\mathcal{C}\left(\psi_{\alpha}\right)$ be the output
3. For each α, compare ρ_{α} with ρ_{1} - use SWAP tests

- $\left\|\rho_{\alpha}-\rho_{1}\right\|_{2}^{2}=\operatorname{Tr}\left[\rho_{\alpha} \rho_{\alpha}\right]+\operatorname{Tr}\left[\rho_{1} \rho_{1}\right]-2 \operatorname{Tr}\left[\rho_{\alpha} \rho_{1}\right]$

$$
\text { Hilbert-Schmidt distance }\|X\|_{2}:=\sqrt{\operatorname{Tr}\left[X^{\dagger} X\right]}
$$

Estimate each term with SWAP test
4. Decide \mathcal{C} to be a constant channel if all distances are small

Recall: constant channel \Leftrightarrow last tooth

Assumption: Unitary Sub-Channeisum

Assumption 1. \mathcal{C} consists of unitary interactions with a fixed-sized system:
${ }^{\circ} \psi_{0}$ is a pure state, $U_{1}, U_{2}, \ldots, U_{n}$ are unitary gates

- All dimensions of input and output wires are the same $d_{A_{1}}=\cdots=d_{A_{n}}=d_{B_{1}}=\cdots=$ $d_{B_{n}}=: d_{A}$
- All dimensions of the memory wires are the same $d_{M_{1}}=\cdots=d_{M_{n}}=: d_{M}$

Does not break generality: any quantum comb can be written as concatenation of unitary gates with large enough d_{M} [Barrett, Lorenz, Oreshkov 2019]

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

Ignoring last tooth (feed the input with maximally mixed state, and discard the output), one still has
($n-1$)-comb satisfying Assumption 1

Low-Rank Ensures Efficiency

Assumption 1 ensures that the comb has Kraus rank

Ignoring last tooth (feed the input with maximally mixed state, and discard the output), one still has

($n-1$)-comb satisfying Assumption 1
The efficiency of testing constant channels depends on the rank of the channel The Kraus rank not growing with the execution of algorithm ensures efficiency

Main Algorithm
 Recursively Find the Last Tooth

Once we find the last tooth, we ignore it, and the rest is a ($n-1$)-tooth comb
Recursively find the last tooth of the $(n-1)$-tooth comb

Algorithm 1. findlast(\mathcal{C})

1. If \mathcal{C} has only one tooth, output the tooth and exit
2. Enumerate all possible $\left(A_{x}, B_{y}\right)$
until $\mathcal{C}_{A_{x} \rightarrow A_{\neq x}, B_{\neq y}}$ is a constant channel Namely $\left(A_{x}, B_{y}\right)$ is the last tooth
3. Run findlast $\left(\mathcal{C}_{A_{\neq x} \rightarrow B_{\neq y}}\right)$

The channel by ignoring A_{x} and B_{y}
4. Output $\left(A_{x}, B_{y}\right)$

Append $\left(A_{x}, B_{y}\right)$ to the end of the output

Main Algorithm Accuracy and Complexity

Theorem. Under Assumption 1, with probability $1-\kappa_{0}$, Algorithm 1 outputs a causal order $\left(A_{\sigma(1)}, B_{\pi(1)}\right), \ldots,\left(A_{\sigma(n)}, B_{\pi(n)}\right)$ such that

$$
\exists \mathcal{D} \in \operatorname{Comb}\left[\left(A_{\sigma(1)}, B_{\pi(1)}\right), \ldots,\left(A_{\sigma(n)}, B_{\pi(n)}\right)\right], \quad\|C-D\|_{1} \leq \varepsilon_{0}
$$

with number of queries to \mathcal{C} in the order of

$$
N=O\left(n^{11} d_{A}^{12} d_{M}^{2} \varepsilon_{0}^{-8} \log \left(n d_{A} \kappa_{0}^{-1}\right)\right)
$$

Algorithms with Local Observatio, 1 ,

We devise a subroutine that computes a Boolean matrix ind $d_{i j}$ s.t. ind $_{i j}=$ true \Leftrightarrow input wire A_{i} and output wire B_{j} are (approximately) independent
It uses only local state preparation and local measurements with query complexity

$$
N=O\left(d_{A}^{6} d_{B}^{6} \chi_{\min }^{-2} \log \left(n d_{A} d_{B} \kappa^{-1}\right)\right)
$$

- d_{A}, d_{B} - dimension of each input/output wire
- n - number of teeth

Logarithmic in n

- $1-\kappa$ - success probability
${ }^{\circ} \chi_{\text {min }}$ - correlation threshold, below this is considered independent

Summary

The first efficient algorithm that discovers general quantum causal orders

- Discover data transmission paths in quantum networks / trajectories of particles
- Check the input-output correlations of quantum circuits, as a verification technique
- Discover the latent structure of multipartite quantum systems
- E.g., for efficient compression [Bai et al. NJP 2020] and efficient tomography [Cramer et al. Nat. Comm. 2010] of them

Algorithm 1: general causal order

- Efficient for combs consisting of fixed-sized unitary gates

Algorithms 2 \& 3: special cases

- Easier to implement: use local state preparation and local measurements
- More efficient: query complexity logarithmic in n

Future Directions

A more informative causal structure than the comb?

- E.g., a directed acyclic graph to describe causal structure (causal graph)

Our algorithms do not efficiently solve all possible cases

- E.g., combs with an exponentially large memory
- The most general case is also difficult for classical causal order discovery
- New problem formulation needed

A probabilistically approximately correct (PAC) algorithm?

- Answer is "correct" as long as a limited-power verifier cannot disprove it
- Quantum PAC learning of causal structure?

Thank you!

G Bai, Y Yang, and G Chiribella. "Quantum Compression of Tensor Network States." New Journal of Physics 22.4 (2020): 043015. arXiv: 1904.06772
G Bai, YD Wu, Y Zhu, M Hayashi, G Chiribella, "Efficient Algorithms for Causal Order Discovery in Quantum Networks." arXiv:2012.01731

