Title: 2D Holography beyond JT

Speakers: Hamid Reza Afshar

Series: Quantum Fields and Strings

Date: December 08, 2020 - 2:00 PM

URL: http://pirsa.org/20120016

Abstract: Dilaton-gravity models are integrable in two dimensions and admit a holographic description. In this talk, the holographic description of the Dilaton-gravity in flat spacetime is discussed. Using the gauge theory formulation of the model we obtain the boundary action which under certain boundary conditions is of the Warped-Schwarzian type. We calculate the 1-loop partition function of the model as the coadjoint orbit of the warped Virasoro group.

Pirsa: 20120016 Page 1/20

2D Holography beyond JT

Perimeter Institute

Hamid R. Afshar

Institute for Research in Fundamental Sciences, IPM Tehran

December 8, 2020

Pirsa: 20120016 Page 2/20

Outlook

- Introduction and motivation
- JT gravity and the Schwarzian action
- Warped Schwarzian action
- Flat space analogue of JT gravity

Hamid Afshar (IPM) 2D Holography beyond JT

December 8, 2020

3/20

Pirsa: 20120016 Page 3/20

Motivation

- How/if Holography works beyond AdS.
- Construct models of quantum gravity in Flat spacetime.
- Low dimensions can help.
- Extend the JT/SYK correspondence to the case of flat.
- What is the flat analogue of the Schwarzian action.

Hamid Afshar (IPM) 2D Holography beyond JT December 8, 2020 4/20

Pirsa: 20120016 Page 4/20

Introduction

-

- 2D Dilaton-gravity is rich enough to accommodate holographic features. The famous example is the JT/SYK correspondence.
- It can provide simple models for semi-classical BH formation/evaporation. The developments associated to the page curve.
- It is exactly solvable.

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

5/20

Pirsa: 20120016 Page 5/20

2D gravity

• 2D Dilaton-gravity can be considered as dimensional reduction from higher dimensions where the Dilaton plays the role of radial direction $R = \ell e^{-\phi}$;

$$ds_d^2 = ds_2^2 + e^{-2\phi} d\Omega_{d-2}^2$$

In the near horizon limit

$$R \sim r_H + r$$
, $e^{-2\phi} \sim e^{-2\phi_H} (1 + X(r, t))$

Expand and keep only O(X)

$$S_{\mathsf{J}T} = S_0 + rac{r_H^2}{2} \int d^2 x \sqrt{-g} \, X(R + r_H^{-2})$$
 AdS $S_{\mathsf{C}GHS} = S_0 + rac{r_H^2}{2} \int d^2 x \sqrt{-g} \, (XR + r_H^{-2})$ Flat

ロ > 4 回 > 4 直 > 4 直 > 直 り Q ()

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

1D Hologram

 The holographic description of the near horizon demands finite temperature in the boundary and a Euclidean time

$$\tau \sim \tau + \beta$$

All fields of the system living on the circle is in some representation of Diff(S¹). They
are arranged as vectors, functions, ... A diffeomorphism f itself is a vector and a scalar
field g is a function;

$$f(\tau) \in Vec(S^1)$$
, $g(\tau) \in C^{\infty}(S^1)$, ...

I

• These fields form a centrally extended symmetry group $\hat{G}(S^1)$ on the circle e.g. Virasoro, Warped Virasoro, ...

4 ID > 4 IB > 4

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

1D Hologram

• Semi-classical holographic degrees of freedom usually have a description in terms of Goldstone modes of the broken symmetry to a global subgroup G_0 .

$$f(\tau), g(\tau), \dots \in \mathcal{M} = \frac{\hat{G}(S^1)}{G_0(S^1)}$$

 These quotient subspaces are called coadjoint orbits of the group and can be constructed and studied systematically. The full semi-classical description of the model is in terms of a partition function which turns out to be one-loop exact; Stanford-Witten-2017

$$Z = \int_{\mathcal{M}} Df Dg \cdots \exp \left(\frac{i}{\hbar} I[f, g, \cdots] \right) = e^{\frac{i}{\hbar} I_{on-shell}} Z_{one-loop}$$

4 ロ ト 4 団 ト 4 恵 ト 4 恵 ト 夏 の Q (C)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Schwarzian theory

$$I_{Schw} = \oint \left(-T_0^c f'^2 + \{f; \tau\}\right), \qquad \{f; \tau\} = \left[\frac{f''}{f'}\right]' - \frac{1}{2} \left[\frac{f''}{f'}\right]^2$$

 In order to perform the 1-loop path integral we need two ingredients; the action and the measure of integration which both can be obtained by the fact that coadgoint orbits are simplectic manifolds. For the case of Virasoro group

$$\hat{G} = Diff(S^1) \times \mathbb{R}$$

• When G_0 is the maximal 3 dim global subgroup SL(2,R) corresponding to symmetries of the the hyperbolic disk

$$T_0^c = -rac{\pi^2 c}{6eta^2}$$
, $Z_{one-loop} \sim rac{1}{eta^{3/2}}$

ロト 4回ト 4 至 ト 4 至 と り 4 (で)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

.0 of 20 < > Q

Warped Schwarzian theory Afshar-2019

$$I_{WSchw} = I_{Schw} + \oint \left[T_0^{\kappa} f'^2 + \left(\frac{f''}{f'} + P_0^{\kappa} f' \right) g' - \kappa g'' \right] + \oint (k g'^2 + P_0^k g' f' + T_0^k f'^2)$$

 The Warped-Virasoro group is the group of diffeomorphism of the circle acting naturally on smooth functions of the circle

$$\hat{G} = Diff(S^1) \ltimes C^{\infty}(S^1) \times \mathbb{R}^3$$

• when G_0 is the maximal 4 dim global subgroup either $SL(2,R) \times U(1)$ or $ISO(2)_c$ we get

$$T_0^{\kappa} = \alpha P_0^{\kappa} = -rac{2\pi i \kappa lpha}{eta}$$
, $T_0^k = 2\alpha P_0^k = rac{lpha^2 k}{4}$, $Z_{one-loop} \sim rac{1}{eta^2}$

ロト 4回 ト 4 重 ト 4 重 と り 4 で

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Example: Jackiw-Teitelboim gravity

In the first order form JT-model can be written as a BF theory of $SL(2,\mathbb{R})$.

$$S_{JT} = \int [X_a(de^a + \epsilon^a{}_b\omega e^b) + X(d\omega - \frac{1}{2}\lambda \epsilon^{ab}e_a e_b)] + I_B = \int \langle B, F \rangle + I_B$$

where $A = e^a P_a + \omega J$ and $B = X^a P_a + XJ$ and

$$[P_a, J] = \epsilon_a{}^b P_b$$
, $[P_a, P_b] = -\epsilon_{ab} J$

with the Killing form $\langle P_a, P_b \rangle = \eta_{ab}$ and $\langle J, J \rangle = 1$.

• The bulk term is zero and the boundary term is determined by imposing AdS₂ boundary conditions and requiring having a well-defined variational principle. The boundary term is the 1D Schwarzian action.

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

of 20 < > Q

Cangemi-Jackiw construction

In the first order form we can write a BF theory for centrally extended Poincaré algebra.

$$S_{\widehat{CGHS}} = \int \left[X_a (de^a + \epsilon^a{}_b \omega e^b) + X d\omega - Y (dC + \frac{1}{2} \epsilon_{ab} e^a e^b) \right] = \int \langle B, F \rangle$$

where $A = e^a P_a + \omega J + CZ$ and $B = X^a P_a + YJ + XZ$ and

$$[P_a, J] = \epsilon_a{}^b P_b$$
, $[P_a, P_b] = \epsilon_{ab} Z$

with the bilinear form $\langle P_a, P_b \rangle = \eta_{ab}$ and $\langle J^{\text{I}}_{,}Z \rangle = -1$. On-shell \widehat{CGHS} and CGHS are equivalent

$$S_{\widehat{CGHS}} = \frac{1}{2} \int \sqrt{-g} (XR - 2Y) + \int Y dC$$

(ロ) (国) (重) (国) (ロ)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Asymptotic symmetries in 2D Flat

A general solution

$$X = x_1(u)r + x_0(u)$$
, $C = rdu$, $ds^2 = -2(rP(u) - T(u))du^2 - 2dudr$

These solutions are preserved by the diff

$$\xi = \epsilon(u) \, \partial_u - \left(\epsilon'(u) r + \sigma'(u) \right) \partial_r$$

The (P,T) transform infinitesimally as;

$$\delta_{\xi}P = (\epsilon P)' - \epsilon'', \qquad \delta_{\xi}T = \epsilon T' + 2\epsilon'T + \sigma'' + \sigma'P$$

What is the group of these symmetries?

(ロ) 4回 4 重 4 重 4 回 9 9 9 9

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

of 20 < > Q

Warped Virasoro algebra

The Fourier mode generators on the circle

$$L_n = \oint T(\tau) e^{\frac{2\pi}{\beta}in\tau}, \qquad P_n = \oint P(\tau) e^{\frac{2\pi}{\beta}in\tau}$$

satisfy the twisted warped-Witt algebra;

$$[L_n, L_m] = (n - m)L_{n+m},$$

 $[L_n, P_m] = -mP_{n+m} - i\kappa(n^2 - n)\delta_{n+m,0},$
 $[P_n, P_m] = 0.$

The \widehat{CGHS} model with appropriate boundary conditions is a Warped-Schwarzian theory.

ロト (日) (豆) (豆) (日) (ロ)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Warped Conformal symmetry Detournay Hartman Hofman 2012

From the 2D point of view they are symmetries of a non-relativistic conformal field theory. In general it admits three non-trivial cocycles. *Afshar Grumiller Detournay Oblak 2015*

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0},$$

$$[L_n, P_m] = -mP_{n+m} - i\kappa(n^2 - n)\delta_{n+m,0},$$

$$[P_n, P_m] = kn\delta_{n+m,0}.$$

ロト (日) (重) (重) (日)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Warped Virasoro group

of 20

< >

$$\delta_{\xi}P = (\epsilon_{\parallel}P)' - \epsilon''$$
, $\delta_{\xi}T = \epsilon T' + 2\epsilon'T + \sigma'' + \sigma'P$

What is the finite form of these transformations? The following finite transformations work;

$$\tilde{P}(f(\tau)) = \frac{1}{f'(\tau)} \left[P(\tau) + \frac{f''(\tau)}{f'(\tau)} \right]$$

$$\tilde{T}(f(\tau)) = \frac{1}{f'(\tau)^2} \left[T(\tau) - P(\tau)g'(\tau) - g''(\tau) \right]$$

where $f(\tau) \simeq \tau + \epsilon(\tau)$ and $g(\tau) \simeq \sigma \circ f(\tau) \simeq \sigma(\tau)$.

200

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Boundary action

of 20

We derive the boundary action in the BF formulation.

Translating boundary conditions in the BF-gauge theory up to a gauge transformation

$$A_{\tau} = 0_{k}$$

$$A_{\tau} = P_{-} + T(\tau)P_{+} + P(\tau)J$$

$$B = [x'_{0} + Tx_{1}]P_{+} + [x'_{1} + Px_{1}]J + x_{1}P_{-} + x_{0}Z$$

We aim to cancel the boundary term which remains after variation of a boundary action.
 The variation of the BF-action is

$$\delta I_{BF} = -\oint \langle B, \delta A \rangle = -\oint (x_1(\tau)T(\tau) - x_0(\tau)P(\tau))$$

(ロ) (国) (重) (重) (国) (の)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Boundary action

$$\delta I_{BF} = -\oint \langle B, \delta A \rangle = -\oint (x_1(\tau)T(\tau) - x_0(\tau)P(\tau))$$

Using the field equations can write this boundary term in terms of linear and bilinear Casimirs

$$\oint \left(\delta \frac{C_1}{x_1} + C_1 \delta \frac{1}{x_1} - C_0 \delta \frac{x_0}{x_1} + \delta x_0' - [x_0 \delta \ln x_x]' \right)$$

where

of 20

$$C_0 = Y = x_1' + Px_1, \qquad C_1 = \frac{1}{2} \langle B, B \rangle = x_0 C_0 - (x_0' + Tx_1) x_1$$

(ロ) (国) (重) (重) (国) (Q)

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

Boundary action

$$\oint \left(\delta \frac{C_1}{x_1} + C_1 \delta \frac{1}{x_1} - C_0 \delta \frac{x_0}{x_1} + \delta x_0' - [x_0 \delta \ln x_x]' \right)$$

This boundary term is integrable provided that the following zero modes are fixed

$$f = \oint \frac{1}{x_1} \qquad \qquad g = \oint \frac{x_0}{x_1}$$

These (quasi)-periodic functions should have fixed periodicity. Plugging in we have

$$I_B = -\oint df \, C_1$$

which reproduces the Warped-Schwarzian action at level zero.

ロト《日》《草》《草》 草 りへで

Hamid Afshar (IPM)

2D Holography beyond JT

December 8, 2020

$$I_{WSchw} = I_{Schw} + \oint \left[T_0^{\kappa} f'^2 + \left(\frac{f''}{f'} + P_0^{\kappa} f' \right) g' - \kappa g'' \right]$$

Thank you for your time. Questions?

Hamid Afchar (IDM)

2D Holography boyand IT

Dogombor 9 2020