Title: Dynamics and observational traces of cosmological ultra-supercooled phase transitions

Speakers: Ryusuke Jinno

Series: Particle Physics

Date: December 11, 2020 - 11:00 AM

URL: http://pirsa.org/20120015

Abstract: In recent years, there has been growing interest in cosmological first-order phase transitions in view of gravitational wave observations with space interferometers such as LISA. However, there is only limited understanding on the bubble dynamics and the gravitational wave signals arising from ultra-supercooled transitions (in which the released energy dominates the plasma energy, i.e., near-vacuum transitions), due to the highly relativistic nature of the transition.

In this talk, I introduce some approaches to understand the dynamics and the gravitational wave signals of ultra-supercooled first-order phase transitions:

- (1) These transitions proceed with the propagation and collision of highly relativistic fluid profiles involving shock waves. I introduce an approach to construct an effective description of the propagation of such relativistic profiles (1905.00899).
- (2) I present an approach to extend the existing model of gravitational wave production and calculate the gravitational wave signals analytically (1707.03111).

Pirsa: 20120015 Page 1/40

Dynamics and observational traces of cosmological ultra-supercooled phase transitions

Ryusuke Jinno (DESY)

12.11.2020 @ Perimeter Institute

1707.03111 (<u>R. Jinno</u>, M. Takimoto) 1905.00899 (<u>R. Jinno</u>, H. Seong, M. Takimoto, C.M. Um)

Pirsa: 20120015 Page 2/40

Self introduction

Career

Ph.D. (2016) @ University of Tokyo → KEK (Japan) → IBS-CTPU (Korea) → DESY (Germany)

Research interests

Gravitational waves & New physics

First-order phase transitions

Spectral deformation [Domcke, Jinno, Rubira '20]

Inflation, (p)reheating

Imprints of light dof

Higgs dynamics in the early Universe

e.g. Unitarity violation in Higgs inflation during preheating [Jinno '16] (thesis) & [Ema, Jinno, Mukaida, Nakayama '16]

Machine learning & Neural networks

e.g. Proposal of the calculation of bounce action as image recognition [Jinno '18]

Tunneling & Gravity

e.g. Infinite # of negative modes in CDL bounce [Jinno & Sato '20]

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

01/29

Pirsa: 20120015 Page 3/40

Outline of the talk

- In the coming decades, we have the opportunity to test first-order phase transitions in the early Universe with gravitational waves (GWs)
- However, in extremely strong transitions, it's hard to predict the GW signal (albeit they are both theoretically and observationally interesting)
- I introduce some researches addressing this problem

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

02 / 29

Pirsa: 20120015 Page 4/40

Gravitational waves: a new probe to the Universe

Gravitational waves (GWs)

Transverse-traceless part of the metric perturbation

$$ds^2 = -dt^2 + a^2(\delta_{ij} + h_{ij})dx^i dx^j$$

Obeys a wave equation sourced by

the energy-momentum tensor of the system

$$\Box h_{ij} \sim GT_{ij}$$

Detections by LIGO & Virgo collaboration have been exciting us

[Wikipedia "List of gravitational wave observations"]
[see also https://gracedb.ligo.org/superevents/public/O3/]

Ryusuke Jinno (DESY) V 170 031 008

Pirsa: 20120015 Page 6/40

From astrophysical GWs to cosmological GWs

GWs directly tells us about the high-energy early Universe

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

04 / 29

Pirsa: 20120015 Page 7/40

Present & Future observations

Pirsa: 20120015 Page 8/40

First-order phase transitions in SM & beyond

■ Within the standard model, the electroweak phase transition is a crossover [Kajantie, Laine, Rummukainen, Shaposhnikov '96] [Gurtler, Ilgenfritz, Schiller '97] [Csikor, Fodor, Heitger '98]...

However, first-order phase transitions occur in many extensions of the SM

[Giudice '92] [Espinosa, Quiros, Zwirner '93]... [Randall, Servant '06]... [Profumo, Ramsey-Musolf, Shaughnessy '07]...

.

- First-order phase transitions provide a possible explanation for the baryon asymmetry of the Universe [Kuzmin, Rubakov, Shaposhnikov '85]
- In the coming decades, we have chances to observe GW signals from this process with space interferometers such as LISA

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

06 / 29

Pirsa: 20120015

Talk plan

- . Introduction
- 2. First-order phase transitions & GW production: A brief review
- 3. Bubble dynamics in extremely strong phase transitions
- 4. GW signal in extremely strong phase transitions: Possible IR enhancement
- 5. Summary

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

07 / 29

Pirsa: 20120015 Page 10/40

Rough sketch of lst-order phase transition & GWs

Bubbles nucleate, expand, collide and disappear, involving fluid dynamics

false vacuum true vacuum

released energy

Quantum tunneling

Position space

nucleation of bubbles

Bubble formation & GW production

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

08 / 29

Pirsa: 20120015 Page 11/40

Bubble dynamics before collision

"Pressure vs. friction" determines behavior of bubble walls

← cosmological scale →

Pressure: released energy pushes the wall outwards

Parametrized by
$$\alpha \equiv \frac{\rho_{\mathrm{vac}}}{\rho_{\mathrm{plasma}}}$$

[see e.g. Espinosa et al. '10 Hindmarsh et al. '15 Giese et al. '20 for various definitions]

Friction: plasma particles push back the wall (note: plasma particles exist everywhere)

Parametrized by coupling η btwn. scalar and plasma

Let's see how bubbles behave for different α (with fixed coupling η)

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

Pirsa: 20120015 Page 13/40

Bubble dynamics before collision

$$\alpha \equiv \frac{\rho_{\text{vac}}}{\rho_{\text{plasma}}}$$

[Espinosa, Konstandin, No, Servant '10] [Giese, Konstandin, van de Vis '20]

Classification of bubble expansion modes

Walls reach terminal velocity due to the balance btwn. pressure & friction

Walls runaway
without caring about the plasma

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

GW production in weak transitions

- So far, just bubble dynamics <u>before collision</u> has been discussed.
 But GW signal comes from bubble dynamics <u>after collision</u>.
- For relatively weak transitions (1&2), the dynamics is more or less known:

- Fluid velocity field overlaps (linearly) everywhere
- The overlap effect works as a long-lasting source of GWs

[Hindmarsh, Huber, Rummukainen, Weir '13, '15, '17] [Hindmarsh '16, Hindmarsh & Hijazi '19]

 We proposed a new efficient scheme to calculate the GW spectrum (Talk yesterday by Henrique)

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

11/29

Pirsa: 20120015 Page 15/40

GW production in weak transitions

- So far, just bubble dynamics <u>before collision</u> has been discussed.
 But GW signal comes from bubble dynamics <u>after collision</u>.
- For relatively weak transitions (1&2), the dynamics is more or less known:

- Fluid velocity field overlaps (linearly) everywhere
- The overlap effect works as a long-lasting source of GWs

[Hindmarsh, Huber, Rummukainen, Weir '13, '15, '17] [Hindmarsh '16, Hindmarsh & Hijazi '19]

 We proposed a new efficient scheme to calculate the GW spectrum (Talk yesterday by Henrique)

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

11/29

Pirsa: 20120015 Page 16/40

GW enhancement from overlapping shells

Sound shells propagate inside other bubbles

- Shells overlap, resulting in continuous GW production at wavelength $\lambda \sim L_{
m shell}^{-1}$

Ryusuke Jinno (DESY) 12 / 29

Pirsa: 20120015 Page 17/40

GW production in extremely strong transitions

In extremely strong transition (3), bubble dynamics after collision is less known

even though they are observationally & theoretically interesting

Central question is: timescale for the energetic shells to break up

because this can change the GWs produced at $\,\lambda \sim L_{
m shell}^{-1}\,$ by orders of magnitude

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

13 / 29

Pirsa: 20120015

Talk plan

- . Introduction
- First-order phase transitions & GW production: A brief review
- 3. Bubble dynamics in extremely strong phase transitions
- 4. GW signal in extremely strong phase transitions: Possible IR enhancement
- 5. Summary

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

/ 29

Pirsa: 20120015 Page 19/40

Reducing the problem

Let's divide the problem into smaller pieces:

After collision, the relativistic fluid shells

- (I) propagate inside other bubbles
- (2) collide with other shells

We study (I) propagation effect, leaving (2) as future work, because
 propagation alone is already nontrivial due to the nonlinearity in fluid equation

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

Main idea

Effective description with a few relevant variables
 We construct an effective description of fluid propagation with a few variables
 which is valid in highly relativistic limit (i.e. strong limit of the transition)

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

15 / 29

Pirsa: 20120015 Page 21/40

Main idea

Effective description with a few relevant variables
 We construct an effective description of fluid propagation with a few variables
 which is valid in highly relativistic limit (i.e. strong limit of the transition)

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

15 / 29

Pirsa: 20120015 Page 22/40

Main idea

Effective description with a few relevant variables
 We construct an effective description of fluid propagation with a few variables

which is valid in highly relativistic limit (i.e. strong limit of the transition)

and check its validity against numerical simulation in mildly-relativistic regime

I show the result of numerical simulation first, to show what's going on

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

15 / 29

Pirsa: 20120015 Page 23/40

Numerical simulation

Assumption: perfect fluid $T_{\mu\nu}=(\rho+p)u_{\mu}u_{\nu}-p\eta_{\mu\nu}$ & relativistic eos $\rho=3p$

- What would be the relevant variables?
 - From the viewpoint of GW production, we are interested only in the <u>peak</u> since it dominates the energy
 - So, the candidates are quantities characterizing the peak

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

Initial condition

The setup we study

- 1 Fluid profile just before collision: calculated from [Espinosa, Konstandin, No, Servant '10]
- Assumption: the first fluid collision does not change the profile significantly
- 2 Fluid profile just after collision: our interest is in the time evolution from here

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

/ 29

Pirsa: 20120015 Page 25/40

Numerical simulation

Assumption: perfect fluid $T_{\mu\nu}=(\rho+p)u_{\mu}u_{\nu}-p\eta_{\mu\nu}$ & relativistic eos $\rho=3p$

- What would be the relevant variables?
 - From the viewpoint of GW production, we are interested only in the <u>peak</u> since it dominates the energy
 - So, the candidates are quantities characterizing the peak

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

16/29

Pirsa: 20120015 Page 26/40

- 5 variables characterizing the peak shape
 - 1) Shock velocity: $v_{\text{shock}}(t)$ (equivalently $\gamma_{\text{shock}}^2(t)$)

2 3 3

2) Peak values: $\rho_{\text{peak}}(t)$, $\gamma_{\text{peak}}^2(t)$

3) Derivatives at the peak:
$$\rho'_{\text{peak}}(t) \equiv \frac{\partial \rho}{\partial r}(t,r) \bigg|_{r=r_{\text{peak}}}$$
, $\gamma^{2\prime}_{\text{peak}}(t) \equiv \frac{\partial \gamma^{2}}{\partial r}(t,r) \bigg|_{r=r_{\text{peak}}}$

- 4 equations are easily found
 - a) Rankine-Hugoniot conditions across the shock: 2 constraints
 - b) Time evolution equations: 2 evolution equations

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

- For completeness, the 4 equations are:
 - a) Rankine-Hugoniot conditions across the shock: 2 constraints

$$p_{\text{peak}} = \frac{p_0 + \rho_0 v_{\text{peak}} v_s}{1 - v_{\text{peak}} v_s}, \quad v_s = \frac{(p_{\text{peak}} + \rho_{\text{peak}}) v_{\text{peak}}}{p_{\text{peak}} v_{\text{peak}}^2 + \rho_{\text{peak}} - \rho_0 (1 - v_{\text{peak}}^2)}$$

b) Time evolution equations : 2 evolution equations $\frac{\rho'_{\mathrm{peak}}(t)}{\rho_{\mathrm{peak}}(t)}$

$$\frac{\sqrt{3}}{2}\partial_t \ln \rho_{\text{peak}} + \partial_t \ln \gamma_{\text{peak}}^2 = -\frac{2\sqrt{3} - 3}{4} \frac{1}{\gamma_{\text{peak}}^2} \left[\frac{\sqrt{3}}{2} \ln \rho' + \ln \gamma^{2'} \right] - \frac{(\sqrt{3} - 1)(d - 1)}{t}$$

$$-\frac{\sqrt{3}}{2}\partial_t \ln \rho_{\text{peak}} + \partial_t \ln \gamma_{\text{peak}}^2 = \frac{2\sqrt{3} + 3}{4} \frac{1}{\gamma_{\text{peak}}^2} \left[-\frac{\sqrt{3}}{2} \ln \rho' + \ln \gamma^{2'} \right] + \frac{(\sqrt{3} + 1)(d - 1)}{t}$$

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

How to construct a closed system

- The last equation?
 - So far, we have less equations (4 eqs.) than the number of quantities (5 quantities)
 - This is natural:

the original system has infinite # of dof (i.e. # of spatial grids \vec{x}), so the system cannot be described strictly by finite # of dof

- So, the last equation to close the system should be APPROXIMATE at best. It will be an equation characterizing our system.

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

How to construct a closed system

- The last equation: energy domination by the peak
 - Any relation like "(peak T^{00}) × (thickness of the profile) = const." will work
 - -Approximating $\rho(t,r)$ and $\gamma^2(t,r)$ to be exponential in r, we have

• The resulting system can be analytically solved (with $\delta = 10/13$)

e.g.
$$\frac{1}{\gamma_s^2(t)} = \frac{8}{87} \left(\frac{\rho_0}{\sigma}\right) \left[t^3 - \left(\frac{t}{t_c}\right)^{\delta} t_c^3\right] + \frac{1}{\gamma_s^2(t_c)} \left(\frac{t}{t_c}\right)^{\delta}$$

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

How to construct a closed system

Implications: the fluid profile remains to be thin until late times

This is not yet conclusive, since shell collision is not yet included

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

21/29

Pirsa: 20120015 Page 31/40

GW production from thin sources

Traditionally, GW signal from thin bubbles had been numerically simulated with so-called thin & envelope approximations

Thin:

[Kosowsky, Turner, Watkins '92] [Huber & Konstandin '08] [Jinno & Takimoto '16]

Released energy is localized around the thin surface

$$T_{ij}$$
 grows like $\propto \frac{\text{(released energy)}}{\text{(surface area)}} \propto \text{(radius)}$

Envelope:

The surface disappears as soon as it collides

We derived the GW spectrum in this system analytically,
 and extended the result to a more realistic system [Jinno & Takimoto '17]

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

GW production from thin sources

 Traditionally, GW signal from thin bubbles had been numerically simulated with so-called thin & envelope approximations

Thin:

[Kosowsky, Turner, Watkins '92] [Huber & Konstandin '08] [Jinno & Takimoto '16]

Released energy is localized around the thin surface

$$T_{ij}$$
 grows like $\propto \frac{\text{(released energy)}}{\text{(surface area)}} \propto \text{(radius)}$

Envelope:

The surface disappears as soon as it collides

trum in this system analytically,

and extended the result to a more realistic system [Jinno & Takimoto '17]

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

22 / 29

Pirsa: 20120015 Page 33/40

GW production from thin sources w/ envelope approximation

- GW spectrum with thin & envelope approximations
 - Formal solution to the GW equation of motion

$$\Box h_{ij} \sim G(PT)_{ij} \implies h_{ij}(t_{\text{end}}, \overrightarrow{k}) \sim \int_{\text{sourcing start}}^{\text{sourcing end}} dt' \text{ Green}(t_{\text{end}}, t', k) \times G(PT)_{ij}(t', \overrightarrow{k})$$

- GW power spectrum ~ 2-point correlator of h_{ij} ~ 2-point correlator of T_{ij}

$$\Omega_{\text{GW}}(k) \sim \frac{1}{G} \left\langle \dot{h}_{ij}(t_{\text{end}}, \overrightarrow{k}) \dot{h}_{ij}^*(t_{\text{end}}, \overrightarrow{k}) \right\rangle_{\text{ens}} \propto \int_{\text{sourcing start}}^{\text{sourcing end}} dt_2 P_{ijkl} \left\langle T_{ij} T_{kl} \right\rangle_{\text{ens}} (t_1, t_2, k) \times \cos(k(t_1 - t_2))$$

- 2-point correlator $\left\langle T_{ij}T_{kl}\right\rangle_{\rm ens}$ can be calculated analytically from considerations on light cones [Jinno & Takimoto '16]

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

GW production from thin sources w/ envelope approximation

[Jinno & Takimoto '16]

- Calculation of 2-point correlator $\left\langle T_{ij}(t_x, \overrightarrow{x}) T_{kl}(t_y, \overrightarrow{y}) \right\rangle_{\text{ens}}$ from light cones
 - 1) Fix $x \equiv (t_x, \overrightarrow{x})$ and $y \equiv (t_y, \overrightarrow{y})$
 - 2) List all possible shell configurations, and for each configuration calculate $T_{ij}(t_x, \overrightarrow{x}) \ T_{kl}(t_y, \overrightarrow{y}) \ \text{and the probability for it to happen}$
 - 3) Sum up $T_{ij}(t_x, \overrightarrow{x}) T_{kl}(t_y, \overrightarrow{y}) \times (\text{probability})$

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

24 / 29

Pirsa: 20120015 Page 35/40

GW production from thin sources w/ envelope approximation

[Jinno & Takimoto '16]

Analytical result

GW energy fraction per each log. wavenumber

$$\Omega_{\rm GW}(k) = \Omega_{\rm GW}^{(s)}(k) + \Omega_{\rm GW}^{(d)}(k)$$

$$\Omega_{\rm GW}^{(s)} \propto k^3 \int_{-\infty}^{\infty} dt \int_{|t|}^{\infty} dr \; \frac{e^{-\beta r/2}}{e^{\beta t/2} + e^{-\beta t/2} + \frac{\beta^2 t^2 - (\beta^2 r^2 + 4\beta r)}{4\beta r} e^{-\beta r/2}} \times \left[j_0(kr) S_0(t,r) + \frac{j_1(kr)}{kr} S_1(t,r) + \frac{j_2(kr)}{k^2 r^2} S_2(t,r) \right] \cos(kt)$$

$$\Omega_{\rm GW}^{(d)} \propto k^3 \int_{-\infty}^{\infty} dt \int_{|t|}^{\infty} dr \; \frac{e^{-\beta r/2}}{\left[e^{\beta t/2} + e^{-\beta t/2} + \frac{\beta^2 t^2 - (\beta^2 r^2 + 4\beta r)}{4\beta r} e^{-\beta r/2} \right]^2} \times \left[\frac{j_2(kr)}{k^2 r^2} D(t,r) D(-t,r) \right] \cos(kt)$$

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

B

GW production from thin sources: w/o envelope approximation

[Jinno & Takimoto '17]

- In realistic systems, the shells do not vanish just after they collide
- Therefore, we need to modify the thin & envelope modeling

Thin:

Before collision:

$$T_{ij}$$
 grows like $\propto \frac{\text{(released energy)}}{\text{(surface area)}} \propto \text{(radius)}$

After collision:

$$T_{ij}$$
 decreases like $\propto \frac{1}{(\text{surface area})} \propto (\text{radius})^{-2}$

but NOT envelope

GW spectrum is calculable in a similar way as before

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

GW production from thin sources: w/o envelope approximation

[Jinno & Takimoto '17]

Analytical result

GW energy fraction per each log. wavenumber

$$\Omega_{\rm GW}(k) = \Omega_{\rm GW}^{(s)}(k) + \Omega_{\rm GW}^{(d)}(k)$$

$$\Delta^{(s)} = \int_{-\infty}^{\infty} dt_x \int_{-\infty}^{\infty} dt_y \int_{v|t_{x,y}|}^{\infty} dr \int_{-\infty}^{t_{\text{max}}} dt_n \int_{t_n}^{t_x} dt_{xi} \int_{t_n}^{t_y} dt_{yi}$$

$$\frac{k^3}{3} \begin{bmatrix} e^{-I(x_i, y_i)} \Gamma(t_n) \frac{r}{r_{xn}^{(s)} r_{yn}^{(s)}} \\ \times \left[j_0(kr) \mathcal{K}_0(n_{xn\times}, n_{yn\times}) + \frac{j_1(kr)}{kr} \mathcal{K}_1(n_{xn\times}, n_{yn\times}) + \frac{j_2(kr)}{(kr)^2} \mathcal{K}_2(n_{xn\times}, n_{yn\times}) \right] \\ \times \partial_{txi} \left[r_B(t_{xi}, t_n)^3 D(t_x, t_{xi}) \right] \partial_{tyi} \left[r_B(t_{yi}, t_n)^3 D(t_y, t_{yi}) \right] \cos(kt_{x,y}) \end{bmatrix}$$

$$\begin{split} \Delta^{(d)} &= \int_{-\infty}^{\infty} dt_x \int_{-\infty}^{\infty} dt_y \\ &\int_{0}^{\infty} dr \int_{-\infty}^{t_x} dt_{xn} \int_{-\infty}^{t_y} dt_{yn} \int_{t_{xn}}^{t_x} dt_{xi} \int_{t_{yn}}^{t_y} dt_{yi} \int_{-1}^{1} dc_{xn} \int_{-1}^{1} dc_{yn} \int_{0}^{2\pi} d\phi_{xn,yn} \\ &\frac{k^3}{3} \begin{bmatrix} \Theta_{\text{sp}}(x_i, y_n) \Theta_{\text{sp}}(x_n, y_i) e^{-I(x_i, y_i)} \Gamma(t_{xn}) \Gamma(t_{yn}) \\ &\times r^2 \left[j_0(kr) \mathcal{K}_0(n_{xn}, n_{yn}) + \frac{j_1(kr)}{kr} \mathcal{K}_1(n_{xn}, n_{yn}) + \frac{j_2(kr)}{(kr)^2} \mathcal{K}_2(n_{xn}, n_{yn}) \right] \\ &\times \partial_{txi} \left[r_B(t_{xi}, t_{xn})^3 D(t_x, t_{xi}) \right] \partial_{tyi} \left[r_B(t_{yi}, t_{yn})^3 D(t_y, t_{yi}) \right] \cos(kt_{x,y}) \end{split}$$

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

GW production from thin sources: w/o envelope approximation

[Jinno & Takimoto '17]

Physical interpretation

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

28 / 29

Pirsa: 20120015 Page 39/40

Summary

- Gravitational waves provide us with the opportunity to test first-order phase transitions in the early Universe
- In extremely strong first-order phase transitions, it's hard to predict the GW signal though they are both theoretically and observationally interesting
- In such transitions, the fluid shells may remain to be thin after the transition,
 and the GW enhancement by sound waves may not occur
- However, IR enhancement of the GW signal is expected from long-lived shells,
 which enhances observational prospects

Ryusuke Jinno (DESY) / 1707.03111, 1905.00899

29 / 29

Pirsa: 20120015 Page 40/40