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Abstract

| will review the numerical approach to testing gauge/gravity
duality using matrix models. This will lead to a summary of recent
results from the BFSS, BMN and Berkooz-Douglas matrix models
and a strong non-perturbative test of gauge/gravity duality.
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The General Framework

Berkooz-Douglas model

The Berkooz-Douglas model [hep-th/9610236]

is A/ =1 SUSY in 6-dim, or A’ = 2 in 4-dim reduced to 1-dim i.e.
time. Also see Van Raamsdonk [hep-th/0112081].

The system describes a D0O/D4 intersection.

The more general framework involves Dp/D(p + 4) systems.
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BD-matrix model at finite temperature T = 1/3
Sgp = SBIESS + 5S¢ + 5y -
with X and ¢ matrices of sizes N x N and N x N and x fermions.

The Bosonic Euclidean thermal action is

& 1 1
SbOS - N'/(; dT TI‘ (EDTXBDTXB + EDTXP'ODTXP’@

1 » 1 a pf a
= XX 4 2 [X7 XX »Xpb])
+tr (- 87D, 0, + B7(X? — m?)20,)
1 3
ARA
+ 5TrAE_ID D

DA =t (3[XPP, X;5] — ©oP°) and a=1,...,5.
The model admits massive deformations (Kim,Yi and Park
[hep-th /0207264]).
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E o The BFSS to BMN Deformation

X and two Hermitian components of Xp; form the X". The
massive deformation of the BFSS model gives the BMN model

b 1 i i 1 r s "./J’ rst ?
SIX,¥] =N [ dr Tr|=D-X'D-X"— = [[x7, X5] + Lerstx,
. > 4 3
1 1 1
——Xr.sz——Xanz _(
1 i.f; 1 i i
#397C (D7) - ZuTey X

Taking p to infinity gives a supersymmetric gauge Gaussian model.
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The gauge Gaussian model.

A simple sub-model of the mass deformed BD (and BMN) model
is the gauge Gaussian model.

3 D
, 1
Sce[X]=N / dr Y S Tr|D; XD, X+ m*X?X?
Jo 2 ,

a=1
This model can be analysed in great detall.

The Hamiltonian formulation involves a system of harmonic
oscillators with a Gauss law constraint which insists on SU(N)
singlets.

o)
(o]
=)
=
B
=
2
—
]

&l
L
.

Testing Gauge Gravity duality with Matrix models

Pirsa: 20120012 Page 7/45



o

erimeter-Dec1-2020.pdf — Testing Gauge Gravity duality with Matrix models - Lt E B = (97%) 4) 19

Properties of gauge Gaussian models

We can understand qualitatively what will happen in the model:
The eigenvalues of X' have a Wigner semi-circle distribution.

At T =0, we can gauged A away, While for large T we get a
pure matrix model with A one of the matrices.

The entry of A as an additional matrix in the dynamics signals
a phase transition.

The transition can be observed as centre symmetry breaking
in the Polyakov loop.

Bosonic matrix membranes are approximately gauge gaussian
models V. Filev and D.O’C. [1506.01366 and 1512.02536].
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Analysing gauge Gaussian models

Integrating out the X? gives the effective action

2 N .
SGG(G) _ D(N2 1),8177 + g Z In |1 . e—ﬁm+r(9;—9j)|2
i j=1

— = Z In|1 —e/(%=0)
t;réj 1
The 0, are eigenvalues of SA in static gauge.

Expanding the logarithms and with u, = % Vel e gives

D(N? —1) De—”mﬁ

Seel(f) =

Bm + NZZ{

The up are moments of the distribution p(6).
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The Hagedorn transition

Examining

D(N? —

S¢e(0) =

At low temperature (large 3) all u, have a minimum at 0 and the
free energy is given by the zero point energy term. As the
temperature is increased u; becomes unstable first.

The Hagedorn temperature

For D > 1 there is a large N phase transition at:
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In the large N limit the free energy is

Dmg 9

BF(p) = >t /p(a) /p(oz/)ln]leBm“(“»‘*’)]zdadﬁ

1

5P /p(()f,)p((ﬂ) In |1 — ei(a*a’)|d(xdm.

For low temperatures including the transition expanding in e~ mMP

and only retaining the leading exponential is sufficient and
equivalent to solving the model

2o = /[dU]ealTr(U)Tr(”l) with a1 = De=™#
resulting in

1 .
BFa = —at|ui* — EP /p(a)p(oﬂ) In|1 —e®=)|dadar .
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€ eigenvalue pution Is given

[hep-th /0310285])

1
e

p(8) = {#\/52 B sin2(

™ty [ = =T ) 1S

arony et a

for B > BH
for B < BH
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e eigenvalue pution IS given arony et a

[hep-th /0310285])

% for B > BH
#\/52 — sin?( for B < By

N
A

0 1 ,.
P=sin?(2)=1—4/1— — =1—1—emB-5H)
2 a1
and

= = B> By
F - 2
BFce { ‘ 8 < B

Near the transition we have

Dmpj3
| for B> By
F — 2:’ m — >
BFee {ngd+ (5—bn) _ m;/z(BH_5)3/2+--- for < fBH
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Energy and Lattice Effects

The energy near the Hagedorn temperature is

. 0GR for > B

B +m oy B =B for B < By.

The energy is discontinuous across the transition, undergoing a
jump discontinuity of 7.

Gauge Gaussian model, N=65, A=40 Low T Gauge Gaussian model, N=65, A=40
E

10.5
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Divergent fluctuations

We can furthermore obtain that the specific heat

0 for B > By

m3/2

ﬁ%—4 53 T for B < BhH.

The specific heat of the gauge Gaussian model is predicted to
diverge with a square root singularity as the Hagedorn temperature
is approached from the deconfined high temperature side of the
transition.
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Divergent 1/N corrections

When the leading 1/N corrections in the large N limit are taken
into account the partition function in the confined phase becomes

o0
Conf _ —D(Nz—l) 5/2 1
Z G " H 1 — e—nm(ﬁ—BH)
n=1 N

which is well approximated by the n =1 term i.e.

ZConf , o D(V2=1)mp)> 1
1 — e—m(B—B8n)
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Near the Hagedorn temperature
Dmpj 1
6F = =2+ 5 In(m(5 — Bu)) +

2
Dm 1 1
il
> "Nz —g, " (1)

E =

The 1/ N? corrections diverge as the Hagedorn temperature

272

is approached. For T ~ Ty — ;=5 the 1/N2 corrections can

compete with the leading ground state energy contribution.

N.B. Fluctuations are large!

Restricting to words of length < N? removes the divergence and
rounds the transition.
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A further conclusion, which can be drawn from the deconfined
phase of the system, and the corresponding large N limit is that
the transition appears NOT to in fact first order. It has a divergent
specific heat on either Sider of the transition. The stronger
divergence appears to be on the low temperature side, but this is
coming from subdominant contributions as the limit is approached.
The above analysis suggests that the Hagedorn transition in the
gauge Gaussian model warrants a closer look.
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The large © BMN model

A similar analysis for the BMN model gives

a1, = 3e785 + 6e7F% + 4P
The Hagedorn temperature for the BMN model is

~ 12In(3)
=

BH

Note: The specific heat of the large ; BMN model also
diverges at Sy! The effect of the fermions is to lower the
Hagedorn temperature. Without fermions the

~ 0.089m

Ty=
"7 6In(3 +2v3)
whereas with supersymmetry
m

TH= 15n(3)

~ 0.076m.

=
B
=
2
=
)

ol
o

Testing Gauge Gravity duality with Matrix models

Pirsa: 20120012 Page 19/45



'ﬂ
rr

]
£a)
=
2
=
B
=4
2
=
]

"N
g
=
=

Pirsa: 20120012

r-Dec1-2020.pdf — Testing Gau avity duality with Matrix models DY -

The BI\/I N model

The BMN action

B :
Seun = NA d’TTI‘{%('DTXI)ZﬁL;(?)) (X)

_ o 1. .
+gie,jk><’)<l><k — Z X, X

1 1
(IZNPAV,

+2 T 2(4)
1

+§(DTX"")2+

Il
mel23w+2wTr (X', W]
= e Xa2
P
1 Trarya 1 a 112 1 a b12
+§w r [X aw]_E[X 7XJ] _Z[X 7X] '

The SO(3) X' shown as red give a matrix model with a transition
to between a thermal and fuzzy sphere phase.

At low temperature it has non-trivial fuzzy sphere vacua

X' = —L£L' with L' su(2) generators.
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Lattice Formulation

Apgpse = A + rpa®A? where A =

aD; —abD-

(< = (5

=(1-r) — anti-symmetric
a

—rral + rypas A2 symmetric

The Clifford Algebra

C and Cv' are symmetric while Cy¥ and Cv7* are anti-symmetric.
— An alternative to ¥'%°> would be ¥1? = j~!2,

¥ 12 was used in Anagnostopoulos et al [arXiv:0707.4454], Catterall
et al [arXiv:1003.4952], Hanada's code and Berkowitz et al
[arXiv:1606.04951].
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The BMN model

F 1 in2 . 1 o, ino
Seomv= N[ drmedimxiy Lty xi
; 2 2'3

- o 1. . .
+’;erka><ka — 2 X4, X
1 1
=B =
+2 & 2
1 =y
(D Xa 2 = a2 Xa 2
1
2

The SO(3) X' shown as red give a matrix model with a transition
to between a thermal and fuzzy sphere phase.

At low temperature it has non-trivial fuzzy sphere vacua

X' = —L£L' with L' su(2) generators.

1 .
(VT iy™W 4w TrX v

+

1 N
wiraxe v] — E[)<=’*,xf]2 —~ Z[Xf*,x"]?} .

Testing Gauge Gravity duality with Matrix models

Pirsa: 20120012 Page 22/45



Lattice Formulation

aD- —abD-

€ — €

=(1-r) — anti-symmetric
a

—rral\ + ryas A2 symmetric

The Clifford Algebra

C and Cv' are symmetric while CyY and Cv7* are anti-symmetric.
— An alternative to ¥'%°> would be ¥1? = j~!2,

¥ 12 was used in Anagnostopoulos et al [arXiv:0707.4454], Catterall
et al [arXiv:1003.4952], Hanada's code and Berkowitz et al
[arXiv:1606.04951].
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The Phase of the Fermionic Pfaffian for Different Lattices

Pfaffian Phase W123k6, N=8,A=16, §=1.25 Pfaffian Phase W123Susy, N=8,A=16, f=1.25
Gaussian fit: mean=0.000061,0=0.0020 Gaussian fit: mean=-0.00009,0=0.0016

L e |l
=0.005 0.005 0.010 -0.010 A 0.005

Pfaffian Phase W12k6, N=8,A=16, 8=1.25 Pfaffian Phase W12Susy, N=8,A=16, =1.25
Gaussian fit: mean=-0.005,0=0.06 Gaussian fit: mean=0.008,0=0.035

10
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BMN Observables

Myers term, ;=6.0, N=8 R vs simulation time for p=6.0, T=0.69, N=8

1000 1500 2000

E vs T for y=6.0, N=8
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The Phase Diagram of the BMN model

(p,T)-phase diagram T, for large N, p=2.0

0.10

Testing Gauge Gravity duality with Matrix models

Pirsa: 20120012 Page 26/45



The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by /4 supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

i 1

|
51]_022—2 [\/—gR—§F4/\*F4—6A3/\F4/\F4]
k11 . b

27l,)®
where 21{%1 = 167G = %
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident DO
branes in the [IA theory. It is given by

ds? = —H 'dt? + dr* + r?dQ2 + H(dxig — Cdt)?

with A3 =0
The one-form is given by C=H ' —land H=1+ a—%’v\rl where
oo = (27)*14ngsl!.
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Including temperature

The idea is to include a black hole in the gravitational system.

The Hawking termperature provides the temperature of the system.

Hawking radiation

We expect difficulties at low temperatures, as the system should
Hawking radiate. It has been argued that this is related to the flat
directions and the propensity of the system to leak into these
regions.

Hanada et al Scignce 23 (2014) Vol. 344 p882
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The black hole geometry

dsi; = —H 'Fdt® + F1dr® + r*dQ5 + H(dxig — Cdt)*

Set U = r/a’ and we are interested in o/ — o
H(U) = 24?}?5’\ and the black hole time dilation factor

F(U)=1- U§ with Up = 2407°a’®X. The temperature

.
AL/3 A pl/3

7 L2

12
H F (U ) 24151/27T7/2()\1/3)

From black hole entropy we obtain the prediction for the Energy

T\ 14/5
N7
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The observables that we focus on

B
1 3. .o 3 -
- A _Ziv! w12 L CSwT iTyi
<N5,/dm< XX+ v cm[X,W]>>

. I}
<N—ﬁ/dtTI > )
0

1
<|NT1"U ),

8
P exp r/tho( t)
0
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The best current results (Berkowitz et al 2016) consistent with
gauge gravity give

14 23

)* —(100+04)(;7:) 7 +(58+085)T% + ..

2 11
h.77T5 +(3.5:l:2.0) T5
— = + ...
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Probing the dual geometry.

We need a suitable probe to test the dual geometry further.
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We use D, branes. These adds new fundamental matter fields to
the Hamiltonian.

M. Berkooz and M. R. Douglas, “Five-branes in M(atrix) theory,"
[hep-th/9610236].

In 1IA string theory this describes a D0 — D4 system.

The more general frarg]ework involves Dp — D(p + 4) systems.
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Add new bosonic degrees of freedom @, as two complex N x N¢
matrices

|
gz

8
/ dr tr D D7D D, — &% (M) 2 I (X7, XPds
0

_ : 1-— _ = s
+O7(X)?, — Eqﬂq;@qﬂ% + CDO‘CDQCI)’jd)g) .

JA and K“ are the SO(3) generators

1 1
Jab - 2(LA4)3b T ZEABC(LBC)ab ; Kaﬁa — 73

equivalent to the

S50(4) generators  (Lap)cd = (02d0bc — 0acObd)
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1 . _
S = ?/tr (JXTD()XJrX’anaX

+V2i Eaf XNaPs — \@ieaﬁ d_>0‘/_\}3x) :

where A\, = PLv,.
The full model is
SBp = SBFss + So + Sy .

The lattice discretisation is again delicate but works!
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The Bosonic model (and ADHM Data)

3
| 1 L. =
Jo
Lova ywo2 | Lrya gosrrya
=7 XX 4 S X XX, X
10 (D,69D,0,+ $(X° — m* )0,

3
1 § : AA
+§TI'A_1D D .

where X2 = 0 with

o)

3
1 _ . _
DA = gA° ([xppﬁxap] - CIDGCI)P) =0

v

specify ADHM data for Yang-Mills instantons on R*.
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Results for the flavoured bosonic model

Pirsa: 20120012

With Nf << N the fundamental fields act as probes on the adjoint
background. The SO(9) symmetry has been broken to

SO(5) x SO(4). In the low temperature phase the system is well
described by a gaussian model with three masses

mt, = 1.964 + 0.003, m!, = 2.001 + 0.003 and

ms = 1.463 4+ 0.001, the adjoint longitudinal and transverse masses
and the mass of the fundamental fields respectively.

Yuhma Asano, Veselin G. Filev, Samuel Kova¢ik and D. O’C.
arXiv 1605.05597
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Two new observables

2 1 & T
= — dr tr ®°o
b N¢ /o g

and the condensate defined as

0 |
c?(m) = e (Nﬁ log Z)
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The Bosonic model (and ADHM Data)

B
" 1 T s
SbOS =N /(; dr |Tr (EDTXBDTXB + EDTXPPDTXPF"

1 5 1 a ypfp a
— 5 [X7 XPP 4 S[X, XX fXPF"])

+ tr (D7D, ®, + (X7 — ?)?P,)

3
1 § : AA
+§TI'A_1D D .

where X@ = 0 with
4y _
=gl (2[XPP,XJp] - dbgcb") =0

specify ADHM data for Yang-Mills instantons on R*.
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Ne=1and N = 10:

((')Cﬁ')l“ﬂ)n

m? 8nd for m? = 0 we can look at the

With X2 — X7 —
condensate susceptibility:

B 5
. _ N . _
(8C> ( / d tr 287X,
Om 0 JO JO
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The D4-brane as a probe of the geometry.

Pirsa: 20120012

The dual adds Ny D4 probe branes. In the probe approximation
Nf < N¢, their dynamics is governed by the Dirac-Born-Infeld
action:

Nr
(21)4 a2 g,

Sper =

/ d*ce™® \/_detllGaﬁ + (2ma’)Fagl|

where G,z is the induced metric and F,z is the U(1) gauge field of
the D4-brane. For us F,3 = 0.

dQi = d0? + cos® 0 dQ3 + sin® 0 dQ;

and taking a D4-brane embedding extended along: t, u, {23 with a

non-trivial profile 6(u),
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Embeddings

: mi’c cos(6)

~

& . § c
usm9:m+~—2+....
]
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The condensate and the dual prediction

05 10 15
V. Filev and D. O'C. arXiv 1512.02536.

The data overlaps surprisingly well with the gravity prediction in
the region where the D4 brane ends in the black hole.
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Conclusions

@ The BD model provides a useful probe of the geometry.

@ The simulations agree well with predictions and provide a
strong test of aspects of the geometry.
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