Title: QED-mediated plasma processes in compact objects: magnetic reconnection and beyond
Speakers: Hayk Hakobyan
Series: Strong Gravity
Date: December 03, 2020-1:00 PM
URL: http://pirsa.org/20120011
Abstract: In compact astrophysical objects, such as neutron star magnetospheres, black-hole accretion disk coronae and jets, the main energy reservoir is the magnetic field. The plasma processes such as magnetic reconnection and turbulence govern the extraction of that energy, which is then deposited into heat and accelerated particles and, ultimately, the observed emission. To understand what we observe, we first need to describe from first principles how these processes operate in violent regimes applicable to certain classes of compact objects, where radiative drag and pair production/annihilation play a significant role. As a specific example, I will briefly cover our state-of-the-art understanding of one of these processes $\hat{a} € "$ " magnetic reconnection $\hat{a} \not €^{\prime \prime}$ and present the first self-consistent simulations of QED-mediated reconnection in application to neutron star magnetospheres and explain how it helps us understand the observed gamma-ray emission from these objects. I will also talk about the future prospects of this area of research; QED-mediated plasma processes also take place in a variety of other astrophysical objects, such as the accretion disk coronae in X-ray binaries, coalescing neutron stars shortly before their merger, and short X-ray bursts in magnetars.

QED-mediated plasma processes in compact objects

magnetic reconnection and beyond

Outline

> Phenomenology of compact objects:

- why kinetic plasma physics and QED effects are important?
- Particle-in-cell algorithms:
- kinetic plasma simulations with the radiative and QED processes.
- Magnetic reconnection:
- plasmoid (tearing) instability in fast regime;
- particle acceleration channels.
- Pair-production mediated reconnection in high-energy pulsars:
- reconnection in global pulsar magnetospheres and high-energy emission;
- effects of radiative synchrotron cooling and two-photon pair production;
- observational implications.
- Future prospects for QED mediated kinetic plasma physics.

Phenomenology of compact objects

* range of scales is ginormous!

Phenomenology of compact objects

* persistent broadband emission + short/long variability
blazar PKS 2155-304
Edelson + (1995)

"giant flare" of SGR 1806-20 Palmer + (2005)

Phenomenology of compact objects

* in the collisionless regime: Coulomb mean free path \gg size of the system
energy of the magnetic field
high magnetization $q_{k}=B^{2} / 4 \pi \rho c^{2} \gg 1$

black hole or neutron star

Phenomenology of compact objects

* in the collisionless regime: Coulomb mean free path \gg size of the system
energy stored in gravity or rotation
e.g., MRI, MAD accretion, etc
energy of the magnetic field

e.g., synchrotron, inverse Compton, curvature, bremsstrahlung, etc
\star

Phenomenology of compact objects

* in the collisionless regime: Coulomb mean free path \gg size of the system
energy stored in gravity or rotation
can be studied with (GR)MHD/force-free simulations
e.g., MRI, MAD accretion, etc
particle kinetic energy and bulk plasma motions
e.g., synchrotron, inverse Compton, curvature, bremsstrahlung, etc
energy of the magnetic field

need to either "fake" in fluid sims or study from first principles with the kinetic approach

Phenomenology of compact objects

* in the collisionless regime: Coulomb mean free path \gg size of the system
energy stored in gravity or rotation
energy of the magnetic field

Phenomenology of compact objects

* in the collisionless regime: Coulomb mean free path \gg size of the system
energy stored in gravity or rotation
self-consistent kinetic plasma physics + radiation + QED
magnetic reconnection and/or turbulence

Particle-in-cell algorithm with radiation and QED $=\operatorname{Tristan}-M P v 2^{*}$
pair annihilation

EM fields evolve on the grid according to Maxwell's equation

Particles experience Lorentz
force computed from EM fields

Photons are emitted

* to see details: ntoles.github.io/tristan-wiki

Takeaways so far

- To reliably reproduce energy dissipation and emission from compact objects we need kinetic plasma approach.
- Radiative and QED effects may significantly influence this process (examples in a moment).
- Particle-in-cell (PIC) algorithm for kinetic plasma simulations can be (and has been) coupled with QED (radiative QED-PIC :).

Takeaways so far

- To reliably reproduce energy dissipation and emission from compact objects we need kinetic plasma approach.
- Radiative and QED effects may significantly influence this process (examples in a moment).
- Particle-in-cell (PIC) algorithm for kinetic plasma simulations can be (and has been) coupled with QED (radiative QED-PIC :).

Next:

- Examples of what kinetic physics enables us to study.
- Demo of QED-PIC power for modeling pulsars.

Magnetic reconnection

NASA [SDO $131 \AA$ §

Magnetic reconnection

NASA [SDO $131 \AA$ Å]

Magnetic reconnection

Kink unstable jets: Davelaar+ (2020)

Neutron star magnetospheres: Philippov+(2015)

Magnetic reconnection

Magnetic reconnection

plasma density + magnetic fieldlines

Magnetic reconnection

$\nu_{\text {in }} \sim \frac{\boldsymbol{E} \times \boldsymbol{B}}{B^{2}} c \sim 0.1 c$
plasma density + magnetic fieldlines

Magnetic reconnection

$$
v_{\mathrm{in}} \sim \frac{\boldsymbol{E} \times \boldsymbol{B}}{B^{2}} c \sim 0.1 c
$$

plasma density + magnetic fieldlines

Magnetic reconnection

Magnetic reconnection

Magnetic reconnection

acceleration channels:
primary: Sironi \& Spitkovsky (2014), secondary: HH+ (2020)

Magnetic reconnection in neutron star magnetospheres

- magnetic reconnection in pulsar magnetospheres powers their γ-ray emission

Philippov \& Spitkovsky 2014-2018
Cerutti+ 2016

Fermi-LAT observations: Abdo+ (2013)

PIC simulation with synchrotron radiation

Magnetic reconnection in neutron star magnetospheres

Problem \#1: when extrapolated to the population of γ-ray pulsars this model predicts strong scaling of $E_{\mathrm{cut}}\left(B_{\mathrm{LC}}\right)$:
$\gamma_{\mathrm{cut}} \sim \sigma \propto B_{\mathrm{LC}}^{2} / \rho_{\mathrm{LC}} \propto B_{\mathrm{LC}} \Rightarrow \nu_{\mathrm{cut}} \propto \gamma_{\mathrm{cut}}^{2} B_{\mathrm{LC}} \propto B_{\mathrm{L} C}^{3} ;$
Problem \#2: reconnection model predicts that the \sim constant fraction ori te Poynting-flux \dot{E} is converted to radiation L_{r}.

Fermi-LAT observations: Abdo + (2013)

Magnetic reconnection in neutron star magnetospheres
Problem \#1: when extrapolated to the population of γ-ray pulsars this model predicts strong scaling of $E_{\mathrm{cut}}\left(B_{\mathrm{LC}}\right)$:
$\gamma_{\mathrm{cut}} \sim \sigma \propto B_{\mathrm{LC}}^{2} / \rho_{\mathrm{LC}} \propto B_{\mathrm{LC}} \quad \Rightarrow \quad \nu_{\mathrm{cut}} \propto \gamma_{\mathrm{cut}}^{2} B_{\mathrm{LC}} \propto B_{\mathrm{LC}}^{3} ;$
Problem \#2: reconnection model predicts that the \sim constant fraction of the Poynting-flux \dot{E} is converted to radiation L_{r}

1. strong synchrotron drag (can disable secondary acceleration):

$$
e E_{\mathrm{rec}} c \ll 2 \sigma_{\mathrm{T}} U_{B} \gamma^{2} \quad(\text { for } \gamma \lesssim \sigma)
$$

2. two-photon pair production ($\gamma \gamma \rightarrow e^{ \pm}$) (can drop the effective magnetization \rightarrow suppress acceleration):

$$
\eta \equiv \frac{\text { secondary plasma }}{\text { primary plasma }} \sim 10^{2}\left(\frac{B_{\mathrm{LC}}}{10^{5} \mathrm{G}}\right)^{5 / 2}\left(\text { even though } \tau_{r \gamma} \ll 1\right)
$$

Magnetic reconnection in neutron star magnetospheres

Magnetic reconnection in neutron star magnetospheres

HH, Philippov, Spitkovsky (2018)

Magnetic reconnection in neutron star magnetospheres

Magnetic reconnection in neutron star magnetospheres

Magnetic reconnection in neutron star magnetospheres

see HH, Philippov, Spitkovsky (2018) for local 2D simulations global 3D - soon
because of the violent two-photon pair production:

- magnetization drops \Rightarrow reconnection is suppressed
- $E_{\text {cut }} \sim$ const
- γ-ray luminosity is suppressed

Takeaways so far

- Reconnection is a powerful mechanism for fast magnetic energy dissipation and particle acceleration.
- Reconnection powers the high energy emission in γ-ray pulsars.
- Strong synchrotron cooling and two-photon pair production not only impact, but often dominate this process in some of the youngest pulsars.

Next:

- Other extreme systems where kinetics with QED effects are important.

Magnetic reconnection in neutron star magnetospheres

Magnetic reconnection

acceleration channels:
$f(\gamma)$

$$
\sigma=\frac{B^{2} / 4 \pi}{\rho c^{2}} \gg 1
$$

Magnetic reconnection in neutron star magnetospheres

photons

HH, Philippov, Spitkovsky (2018)

Takeaways so far

- Reconnection is a powerful mechanism for fast magnetic energy dissipation and particle acceleration.
- Reconnection powers the high energy emission in γ-ray pulsars.
- Strong synchrotron cooling and two-photon pair production not only impact, but often dominate this process in some of the youngest pulsars.

Next:

- Other extreme systems where kinetics with QED effects are important.

Coronae of x-ray binaries

* Hard state is powered by the IC emission from hot corona. Energization mechanism for corona is an open issue.

Zdziarski \& Gierliñski (2004)

* ms-duration strong flares are observed during hard state (Schwarzschild timescale is $t_{g} \sim 0.1 \mathrm{~ms}$) see, e.g., Zdziarski \& Gierliński (2003)

Coronae of x-ray binaries

* Magnetic reconnection of the coronal loops is a likely mechanism to power the energization.

Galeev, Rosner, \& Vaiana (1979)

Coronae of x-ray binaries

* Shear leads to transient reconnection and flare eruptions in force-free. Kinetic properties of these large-scale explosions (mediated by QED effects) have never been studied.

Conditions in XRB coronae (during the hard state)

- $B \sim 10^{8} \mathrm{G}, k T_{e} \sim 100 \mathrm{keV}, B^{2} / 4 \pi \gg \rho c^{2}, L \sim 3 \cdot 10^{37} \mathrm{erg} / \mathrm{s}$

Inverse Compton radiation: Sironi $\&$ Beloborodov (2020)

- $t_{\text {IC }} \gg t_{\text {acc }} \Rightarrow$ moderate IC drag compared to acceleration
- $t_{\text {IC }} \ll L / \nu_{A} \Rightarrow$ IC drag important on dynamical timescales

Pair production/annihilation: Beloborodov (2017)

- Compton parameter: $y \sim 4\left(k T_{e} / m_{e} c^{2}\right) \tau_{\mathrm{T}}^{2} \sim 1 \Rightarrow \tau_{\mathrm{T}} \sim 1$
- If only $e^{-} / H^{+}: \tau_{\mathrm{T}} \ll 1 \Rightarrow$ dominated by $e^{ \pm}$plasma
- $\tau_{r \gamma} \sim 1-10 \Rightarrow e^{ \pm}$production/annihilation $\left(\gamma \gamma \leftrightarrow e^{ \pm}\right)$

Magnetar bursts

duration $\sim 1 \mathrm{~s}, \quad L_{X} \sim 10^{40} \mathrm{erg} / \mathrm{s}, \quad B \sim 10^{8}-10^{11} \mathrm{G}$, $B^{2} / 4 \pi \gg \rho_{e} c^{2}, \tau_{\mathrm{T}} \gg 1, T_{e} \sim$ few $\cdot 10 \mathrm{keV}$

magnetar burst in force-free MHD (Yuan + 2020)

* also see Parfrey+ (2013)

Sironi+ (2020)

Main takeaways

- Magnetic energy dissipation and particle acceleration/heating is dictated by small-scale kinetic plasma processes (turbulence, reconnection).
- From kinetic simulations we know that the reconnection (and turbulence) is an efficient mechanism for particle acceleration. These processes cannot be captured with fluid (MHD, force-free) simulations.
- In certain compact objects these processes are mediated by strong radiation, Compton scattering and $e^{ \pm}$-production/-annihilation.
- For instance, in γ-ray pulsars two-photon pair production self-consistently suppresses particle energization, controlling the observed high energy cutoff. To numerically study these effects a novel approach (QED-PIC) is required.
- These QED processes may strongly influence* and sometimes even dominate the energy dissipation process, particle heating/acceleration and, ultimately, the emerging emission.
- XRB coronae in hard state, binary neutron stars shortly before the merger, magnetar flares, relativistic AGN jets, GRB jets in subphotospheric regime, etc.

[^0]
[^0]: * ask me for details

