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Abstract: In thistalk | will introduce the Fully Constrained Formulation (FCF) of General Relativity. In this formulation one has a hyperbolic sector
and an elliptic one. The constraint equations are solved in each time step and are encoded in the elliptic sector; this set of equations have to be
solved to compute initial data even if a free evolution scheme is used for a posterior dynamical evolution. Other formulations (like the XCTS
formulation) share a similar elliptic sector. | will comment about the local uniqueness issue of the dlliptic sector in the FCF. | will also described
briefly the hyperbolic sector. | will finish with some recent reformulation of the equations which keeps the good properties of the local uniqueness,
improves the numerical accuracy of the system and gives some additional information.
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Outline:

- General Relativity: motivation.
- Elliptic equations and hyperbolic equations.

- 3+1 formalism: free evolution schemes vs
constrained formulations.

k
- CFC and the local uniqueness issue.
- FCF: structure of the different sectors.

- Conclusions and future steps.
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General Relativity: motivation

- Mass / ratio diagram for compact objects do not have a maximum mass
in the case of Newtonian gravity.
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State-of-the-art topic with recent GWs superevents: S190814bv coming

from merger of compact objects with component with low mass (< 3 solar
masses).

- MHD equations: supernovae core collapse.
- Black holes and relativistic jets.

- Gravitational lensing.
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General Relativity: formulations

GR equations have a nice and compact formula...

but actually we are talking
about non-linear partial
differential equations (PDEs)
coupled with the matter
evolution content (non-
vacuum spacetimes),
neutrino radiation...

high COMPLEXITY!

- 2+2: null cones, analysis of radiation at spatial / null infinity.
- 3+1: Lichnerowitz 1944, Choquet-Bruhat 1952:

- Foliation of space-time by spacelike hypersurfaces, and evolution of the
metric components through hypersurfaces: Cauchy problem (PDE with
initial and boundary conditions).

- Most commonly used in numerical relativity.
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Brief summary of elliptic and
hyperbolic PDEs

- The character of a PDE is determined by the higher order derivatives.
- Elliptic equations:

-- Mathematical definition: if we consider a differential operator of the form

Z o, D”  and consider a non-null vector ¢ 7§ 0, then Z OzpCp =+ 0.

pé?’n* p:r(n
The previous expression has a defin&d sign.

-~ Important exemple: Laplace equation in cartesian coordinates:
- 2 £ /2
Af=> 0°f/0x} =0
1
2 2 2
G+G+...+G>0

But this is a very theoretical definition... so it would be convenient to know the
main properties of this kind of equations.
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Brief summary of elliptic and
hyperbolic PDEs

-- Main properties of elliptic equations:

The solution in the whole domain is determined by the values at the boundary:

02f /022 + 02 f /03 = 0
f(@y, —m) = cos(w1) = f(x1,7)

f(—=m,x2) = cos(xzs) = f(m,x3)

This can be interpreted as a infinite speed propagation.

If | change slightly the value of the function somé&where at the boundary, the whole
solution changes.

Physically, these equations used to represent constraints or restrictions.
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Brief summary of elliptic and
hyperbolic PDEs

- Hyperbolic equations:

-- Mathematical definition:
we have an evolution equation of the form

U+ ABU =G
We also consider a general vector Gi .

Then, the eigenvalues and eigenvectors system associated to previous

equation, ,
(I = AGA)r =0

* forms a set of real eigenvalues and a basis of real eigenvectors.

- Important exemple: spherical wave 92 f /0t? = 92 (ru)/Or?
with general solution [ (t,7) = G1(r —t)/r + Ga(r +1t)/r

-~ Any kind of waves are modeled by hyperbolic equations.
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Brief summary of elliptic and
hyperbolic PDEs

-~ Main properties of hyperbolic equations:

Finite propagation (eigenvalues) in known directions (eigenvectors); in GR
eigenvalues are bounded by speed of light in vacuum.

Given some initial data, the values of the function at the boundaries depend on
the directions determined by the eigenvalues: consistent propagation of the
information.

If | change slightly the value of the function somewhere, the whole solution will
only change locally according to the eigenvalues and eigenvectors system.

Physically, these equations used to represent evolution of a system: fluids,
traffic...

It is common that shocks and discontinuities appear
in the evolution of these equations even if we consider
smooth initial data.
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3+1 formulations

N

Gauge freedom: free choice of the more desired / P i

convenient foliation. / —

- Physical motivations: e.g., maximal slicing in / / /

order to avoid singularities... / / // et
/ {pt \

- Mathematical motivations: e.g., well-posedness / / / ~

of the resulting PDE system... , Z / /

- Numerical motivations: e.g., stability of long-term
numerical simulations, efficient evolution...

Decomposition of Einstein equations: ¢ = Nn + 3. v = v;;dz'da’
Metric line element: gasdr®dz” = —NZdt? + ~;; (dx' + 3'dt) (da? + 37 dt)

Extrinsic curvature: K := —1.,~
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3+1 formulations

Splitting: - ij components: evolution equations (6+6) for the 3-metrix and
extrinsic curvature.
- 00, 0i components: constraint equations (4), Hamiltonian and
momentum constraints.

If constraints equations are fulfiled initially, then they are also fulfiled
ANALYTICALLY through the evolution... but this does not happen always
numerically:

- Free evolution schemes: evolve the evolution equations and MONITOR
the error in the constraint equations: BSSN (strongly hyperbolic and well-
possed), ccZ4...

- Constrained evolution schemes: SOLVE the evolution and constraint
equations on each spatial hypersurface: CFC, FCF...

Different formulations:
- New variables defined.
- Gauge conditions.

s
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CFC

CFC (Conformally Flat Condition): Isenberg 1979/2008, Wilson and
Mathews 1989:

- Spatial 3-metric is assumed to be conformally flat. Gravitational radiation
encoded in the neglected terms:

Yeg = 15’4:%';‘: Yi; = Jis + Rz, iy 20,

- Exactin spherical symmetry (CC 2011). Very accurate for axisymmetric
rotating NSs. 5

- Set of elliptic equations for the metric variables (including the constraint
equations): lapse, shift, conformal factor.

- Applications: collapse of rotating cores of massive stars and GWs
catalogue (H. Dimmelmeier), evolution of binary systems NS-NS/BH (A.
Bauswein)...

- Shares similar structure with XCTS, used in generation of initial data.
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Local uniqueness issue

CFC (Conformally Flat Condition): Isenberg 1979/2008, Wilson and Mathews 1989:

| YOKyKY ]

Ay = =27y '[E”‘
167

y _ o o i ‘inf)Kf_f [\”
ANY) =2aNy 1|:£;"' + 25 + —]( : ]
YIT

AY)
IV

: [(— , _ N .
Ag + ED’,D;B'} = 167Ny~ *(S*) + 2¢'°KVD,; E:

The original set of elliptic equations suffer from a non-local uniqueness pathology
at extreme curvature or very high density regimes [CC et al. 2009].

A maximum principle can be used to prove local uniqueness of the solutions of
elliptic equations of the form
Au+ hu? =g

aslongas sign(p) # sign(h).
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Local uniqueness issue

1.0 77— T T T T T T

Full relativistic case (problem does | p - o, L
not come from CFC simplification) o ) r\ Rt
with a similar elliptic sector: Besg

08F |\

s . \

- Evolution of a vacuum spacetime, ) 07\

with initial data formed by a =\
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amplitude: dispersion of wave
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problems. [ ‘ |
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- When a high amplitude is used
instead: wave packet collapses to a
BH and wrong behaviour of central
lapse and ADM mass (also for
conformal factor). Convergence to
another (unphysical) solution.
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Local uniqueness issue
Conformal decomposition of extrinsic curvature and introduction of auxiliar
vector:

K4 — 1};’)10142)7141 = (LX) + A2, ~ (LX)? =D'X) 4+ DIX"' - §DkXA.f1J

From the momentum constraint we can deduce an elliptic equation for the
new auxiliar vector and rewrite the whole elliptic system:

AX! + %D"@j){j — Sﬂ'.l'li,jb‘:;

, fufimA™ A"

8
7filfjmAh”A”
8

AB' +1Di(D; /) = D;2N ¢ °AY)

Ay =27y 'E*X—

A(YN) =2aNy Y(E* +28*) + Ny’

Local uniqueness is guaranteed and hierarchical structure is found: xCFC
scheme. Implemented in several codes: CoCoNuT, x-Echo (Bucciantini
and Del Zanna, 2011).
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Local uniqueness issue

Succesful simulations in xCFC:
- Migration of unstable NS to the stable branch.
b - Collapse of unstable NS to a BH. 0
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Fully relativistic scheme: FCF

FCF (Fully Constrained Formulation): Bonazzola 2004:

- Maximal slicing and generalized Dirac gauge: K =0, D,;h" =0

- Conformal 3-metric and conformal decomposition of extrinsic
curvature.

- Extension of CFC: similar elliptic system with extra source terms,
and additional hyperbolic sector with the evolution of A, A,
encoding the GW radiation.

- Elliptic equations are more stable but difficult to solve and
parallelize: Chevishev-Jacobi methods (CJM) (Adsuara et al. 2017)
could solve the parallelization problem...

- Hyperbolic equations: Partially Implicit Runge-Kutta (PIRK) methods
(CC and Cerda-Duran 2012) developed,for these equations and
afterwards applied to other formulations (BSSN).
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Fully relativistic scheme: FCF

FCF (Fully Constrained Formulation): Bonazzola 2004: elliptic sector

N . » 3 | [ " il
A §DIDJ'XJ =g (Dk?m! - 2Dmﬂ'ﬂ> A+ 8777(S);,
1 AP
KD, Dpp = —2mpLE* — g(,'-—Tﬁ-,-,:;j,,,A"”AU + gz;'R.

7 g K g
5D, D)(NY) = N (27.—f_-e—2(E* +25%) + gr_-—S:,-,:;ij“”AU s gR) .

. : — . . _
AB + 3D'Dif = 167Ny~ °59(S*); — WDy DB’ — 3/#‘1),(19,-3! + ATD; (2N ~°)

_NL"_(-);;{m(Dk;;mf + DiAkm — Dm:;kf) ((LX)H ax Ai'}fr) R
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Fully relativistic scheme: FCF

FCF (Fully Constrained Formulation): Bonazzola 2004: hyperbolic sector

OchY = B*Dih¥ + 2Ny =AY + 2Ny ~8(LX) — 3*Dy 5/ — 39Dy B + g*j”’Dk gk

s

A v i . ol i L s N
8 AT =D, (;#‘A”) —A¥D, g — A*D, B + gAU’Dk Bk 4+ 2Ny 05, Ak A/l

1 _— 1 . g . » -
3Nf-2R:;U — z(s-ikmh"f + 39D hYD(N?) — (LX)Y

+N¢.-‘2f?£ —

N2 o N2 : o -
+Dy (?) KD AT + %ﬁ’f“m (D,h’f) + 45 A D DIN + 5% D NDj)

+8N5*3ID Dy — 515K Dy Dy(NY) — 5% D Dy(NY?) +

— 8w Ny° ('z_’*45” - 53’ ) .

V5D Dy (Ny?)

W | co
W =
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Fully relativistic scheme: FCF

FCF (Fully Constrained Formulation): Bonazzola 2004: elliptic sector

: | : i - I i A ~ijrc*
AX" - gDIDjXJ = -5 (Dk";m! - 21Dm’":kl> A¥ T 8;7?41(5 )f"
1 cmas 1 g
YD, Dy = —2mpLE* — g‘f'_?ﬁ'iﬁij!mAU + g‘-'R-

7 PRI
5D, D) (Nv) = N (27.—L-»—2(E* +25%) + gt-—fﬂ%,-,s,-mA“”AU i gR) .

. S : . . . . _
A + 52)’17,-.-31 = 167Ny~ %57 (S*); — WD D)8’ — 3!7”‘1)ij F + ATD;(2N~°)

—NY =™ (DiFms + Dphm — D) (LX) + A7)
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Fully relativistic scheme: FCF

FCF (Fully Constrained Formulation): Bonazzola 2004:

The elliptic sector has a similar structure to the CFC scheme and a
new hyperbolic sector has to be considered.

. | 1
Numerical accuracy? g =0 ((—5)
“  Expansion of metric [ 1
variables in terms of N=1-=+0|—
1/c powers c? c?
[Blanchet, Damouir, |
Schafer 1990]: i — o (_)
A
p=1+—10(= A9 = Ajp + (LX)9 =0
. Dl oA sl - : —
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FCF: numerical accuracy

Work in progress in collaboration with S. Santos (PhD student): Evolution
equations can have numerical accuracy problems due to cancellations:

1/¢® 1/¢7 1/(,'3 e
ahid = BEDRRI + NP8 A, + INy—S(LX)Y — y* D3I — Dyt + S5y h
o)

1/c8 "
e,
a Al]  _ atj (T YV \ij —
(}t‘lTT_H_'l —(L.\} —

B (.flgl’i) _ ‘_lﬂ_jpk.,;.‘ . ‘__l.‘ﬁ'Dk‘)J_} e ?‘V‘IDk:fl 4 9N f,‘_G’:»M;'ll'l;l-’{ (5. _1A\ Nl v "'Hc".'n'm?ll‘m‘13”

+ Ny RY 4+ Dy (—;) DR — 3_\'1.-'35’—‘ Y — ~(*DrhY + DR Dy(NY)

+4p YA RZID Dy (N Y?) + 4~ 15 %33 Dy DR (N ?) — 20~ 13935 Dy Dy (N ?)

1/cd

MDy (Dih7) — SNARI Dy Drtp + 2NAIAM Dy Dy — 3*39 D Dy (N %) — (LX)

1/cA

—8TNY'0SY + 4N S*34.
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FCF: numerical accuracy

Definition of new auxiliary variable: V' = 2N 0 X* — ._ﬁ%"'

Elliptic sector:

- Keep elliptic equations for: X*, 1)

- Replace elliptic equation for N by elliptic equation for: N¢? ~ 1+ O(c™?)
- Replace elliptic equation for Bi by elliptic equation for: V* ~ (9(0—5)

- Add elliptic equation for: X’ ~ O(c™?)

Still guarantee of local-uniqueness and hierarchical structure.
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FCF: numerical accuracy

Hyperbolic sector:

1/c”

o

7~

. L | R T
0,hi7 = B*DLhY — WkD BT — WD A + E/»’-"D;,.f"'

1fzn

.

”~

+2NY S Ay + (LV)Y — XIDH(2N$~8) - X'DI(2NY~) + 2 fIX Dy (2N )

N2
9

—(LX)Y — 87 N¢'%SY 4+ Ax NS*3Y 4+ © () .

6

Gl — D'Dihl — SND*Y DIy 4 2N fFID YDy — D'DI (Ny?)

s

We have fixed the right accuracy for the first evolution equation.

For the second one, we can derive an estimate for the h tensor.
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Numerical computation
of initial data

- Rotating neutron star (LORENE code):
12.859 km star radius, 7.91g/cm? central
density, 606 Hz (1/s), politropic fluid with
Gamma=2.

- Spherical orthonormal coordinates.
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Numerical computation
of initial data

- Rotating neutron star (LORENE code):

12.859 km star radius, 7.91g/cm? central
density, 606 Hz (1/s), politropic fluid with

Gamma=2.

- Spherical orthonormal coordinates.
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<1010 g=xl2

Numerical computation 1
of initial data |
- Rotating neutron star (LORENE code): Ll .
12.859 km star radius, 7.91g/cm? central “ | - |
density, 606 Hz (1/s), politropic fluid with 3f 1
Gamma=2.
- Spherical orthonormal coordinates. B
0 8=mnl2 51
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- : schemes vs schemes.

- Need of solving the constraint equations for in both cases.
- CFC and the problem: derivation of

- Fully relativistic scheme:

- Same sector of xCFC (local uniqueness and hierarchical
structure) and extra sector.

potential problem in the hyperbolic sector.

- Definition of :

-+ Keep good properties in the and improves accuracy with
respect to xCFC equations.

-~ Work in progress in the - numerical accuracy problem

partially solved, estimate of tensor encoding the gravitational radiation.
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- Check accuracy in numerical simulations
— importance in calibration of GWs templates.

- Check remaining (determinant of A%_..)in different

numerical simulations.
N

- Possible use of leading terms in simplified simulations:
applications.

Thank you for your attention and we are
looking forward to visit the Perimeter Institute!!!
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