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Abstract: In a quantum measurement process, classical information about the measured system spreads through the environment. In contrast,
guantum information about the system becomes inaccessible to local observers. In this&nbsp;talk, 1 will present a result about quantum channels
indicating that an aspect of this phenomenon is completely general. We show that for any evolution of the system and environment, for everywhere
in the environment excluding an O(1)-sized region we call the "quantum Markov blanket," any locally accessible information about the system must
be approximately classical, i.e. obtainable from some fixed measurement. The result strengthens the earlier result of arXiv:1310.8640 in which the
excluded region was allowed to grow with total environment size.& nbsp; | will also discuss applications to many-body physics.
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Emergent classicality and a bound on
the spread of quantum information

Speaker: Daniel Ranard
Joint work with Xiao-Liang Qi
arXiv: 2001.01507

Builds on: Brandao, Piani, Horodecki (2015, Nat. comm. 6:7908)
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Outline

* Examples of information spreading in different systems
* General constraint on spreading in a// systems
* Precise theorem statement

* Implications for many-body systems
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How can information spread during evolution?
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How can information spread during evolution?
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Decoherence example

A\ ia Sopecposition

\ 1) = {cal0)a + cx/104) 0}, 10) 2, 00,
[+
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Decoherence example
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How can information spread during evolution?

Lacge lahice Sysfem
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How can information spread during evolution?
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How can information spread during evolution?
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Earlier work

Inspired by very similar ideas in the excellent paper:

Generic emergence of classical features in quantum Darwinism,
Brandao, Piani, Horodecki.

The present work proves a stronger statement, with a simple +
constructive argument.
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Studying local sub-systems of the environment

}— Input system

Imagine input A couples to environment B,
then study local sub-systems of B.

q&-g >

L @ [
By B; B B, }— B =B, ®--® B, Output, or “environment”
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Studying local sub-systems of the environment

}— Input system

Imagine input A couples to environment B,
then study local sub-systems of B.
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A

What can Bob learn about A? For most B;, only classical information! (Our result)
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Studying local sub-systems of the environment

}- Input system

Imagine input A couples to environment B,
then study local sub-systems of B.

A

¢
3
-

o
_B1 _B; Bs

A

What can Bob learn about A? For most B;, only classical information! (Our result)

- By }— B =B; ®:-&® B, Output, or “environment”

Almost everywhere in the environment B, the locally accessible information about A looks
classical, i.e. can be obtained from a measurement of 4 in some fixed basis.
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Studying local sub-systems of the environment

Pa

A

o

E 3 Model evolution as coupling to environment,
evolving, then tracing out all except B;

pe; = Tras; (Usp (pa @ t5)U4p)

-~
B1 B> Bj o iy
T T Environment starts in state 75
% Then both systems evolve by unitary Uyg
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Studying local sub-systems of the environment

Pa

A

o

£ Model evolution as coupling to environment,
evolving, then tracing out all except B;

pp; = Tras; (Usp (pa ® TB)UA+B)

B1 B> Bj v-:}n /) 7 /)

Environment starts in state 74
il % Then both systems evolve by unitary Uyg
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Interlude: Measure-and-prepare channels

A Quantum channels A4 - B are maps from the space of
- density operators on system A to density operators on B,
e,

Pa 7 Pp

Channel

“Measure-and-prepare” channel: Special type of
channel that takes the form

pa P pPp = zTr(M“pA) 8

—_— a S
v for some measurement operators {M“%}, and states {05},
B (e.g. orthogonal projectors M* = |a){«a|)
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Interlude: Measure-and-prepare channels

/

\

Evolutions of the form
Pa P Pp = z Tr(M%p,) og ,
a

represent measuring A in the basis associated to M“
and then preparing the state g5 contingent on classical
outcome «.

For Alice and Bob are at different labs A and B, they can
implement such a map by sending only classical information:
Alice measures A and then sends the outcome label a to Bob,

who then prepares a state g.

\

_/
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Interlude: Measure-and-prepare channels
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Pa 7 P = z Tr(M%py) Ug_»

a

represent measuring A in the basis associated to M“
and then preparing the state g5 contingent on classical
outcome «.

For Alice and Bob are at different labs A and B, they can
implement such a map by sending only classical information:
Alice measures A and then sends the outcome label a to Bob,

who then prepares a state gy
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Our result: For any evolution A - B ...

Pa

A

-

EX Model evolution as coupling to environment,
evolving, then tracing out all except B;

pg; = Trag; (Usp (pa ® 18)U, )

* -;’B t BZ i = 5n ~ Z Tr(M%p,) of, ‘“measure-and-prepare”
a

% for almost all B;

for some choice of measurement operators {M%}
(independent of B;)
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Our result: For any evolution A - B ...

Pa

A

-

EX Model evolution as coupling to environment,
evolving, then tracing out all except B;

pg; = Trag; (Usp (pa ® 1)U, )

v
: TBl 7 BZ B3 - By ~ Z Tr(M%p,) op, “measure-and-prepare”
a

% for almost all B;

for some choice of measurement operators {M“}
(independent of B;)

For almost all B; (all but O(1)-many), the evolution p, — pg, looks like performing a fixed
classical measurement on A4, followed by preparing some state on B; based on the outcome.
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Our result: For any evolution A - B ...
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;vf_;Bl Jz B3 By ~ Z Tr(M “pA) “measure-and-prepare”
11— e

% for almost all B;
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(independent of B;)
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classical measurement on A4, followed by preparing some state on B; based on the outcome.
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Examples of applying theorem to evolutions

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

Pe; = TTa5; (Uap(pa & TB)U/TB)
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Example: Direct transport A — B,

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

Pe; = TTa5; (Uap(pa & TB)UA'—B)

s = |0)®n(0|®n Example:
Input system A sent faithfully to B,

Uspl0)4]0...0)5 = [0)4]0...0)5 Other B; sent to [0) (for i > 1)
Uspl1)4l0...0)p = [1)4]00 ...0)g

Pa = P, = Pa Not measure-and-prepare X

pa = pp; = Tr(pa)|0X0]p, (fori>1) [Measure-and-prepare \/] (Trivial prep.)
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Example: Direct transport A — B,

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

Pe; = TTa5; (Uap(pa & TB)UA'—B)

= [0y®7(0|®n Example:
B Input system A sent faithfully to B,
Uspl0)4]0...0)5 = [0)4]0...0)5 Other B; sent to [0) (for i > 1)

Uspl1)4l0...0)p = [1)4]00 ...0)g ==
Pa = Pp, = Pa o @measure-and-prepare X> %)
pa = pp; = F(p4)|0NXO0|p, ) (fori > 1) [Measure-and-prepare \/] (Trivial prep.)
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Example: Spin chain evolution

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

PBi=T7”AB_i(UAB(PA®TB)UXB) @ Cooo DO & ©

7p = Groundstate of spin chain B Example:

Couple qubit A onto end of spin chain B,
U,z = Evolution of extended chain AB | then evolve extended chain

Pa = pp; = 2277 [ Measure-and-prepare \/ ]
Numerical examples work!
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Example: Spin chain evolution

Pa

Model evolution as coupling input A to environment B, iR
evolving both, then tracing out all except B;

pp, = Trag; (Usp(pa ® 15)USR) @JO OO0/ & ©

7p = Groundstate of spin chain B Example:

Couple qubit A onto end of spin chain B,
U,z = Evolution of extended chain AB | then evolve extended chain

Pa = pp; = 2277 [ Measure-and-prepare \/ ]
Numerical examples work!
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Example: Spin chain evolution

Pa

Model evolution as coupling input A to environment B, iR
evolving both, then tracing out all except B;

pp; = Tram; (Uap(pa ®TB)£§) @JO COOB60O @ ‘O —

2,
7p = Groundstate of spin chain B Example:

Couple qubit A onto end of spin chain B,
U,z = Evolution of extended chain AB | then evolve extended chain

Pa = pp; = 2277 [ Measure-and&prepare \/ ]
Numerical examples work!
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Example: Decoherence

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

Pe; = TTa5; (Uap(pa & TB)UXB)

5 = 10)®™(0[¥"

Uszl0)410)5%™ = 10),4]0)5®"
Uspl1)410)5%" = [1)4]1)5®"

(Example: N A

Input system A is measured/decohered
in [0), |1) basis

Outcome recorded on each B;

4

pa = pi, = Tr( 1001 pa)I0XOL5, + Tr(I1X1] pa) 111, [ Measure-and-prepare +/ ]
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Example: Decoherence

Pa

Model evolution as coupling input A to environment B,
evolving both, then tracing out all except B;

Pe; = TTa5; (Uap(pa & TB)UXB)

5 = |0)®™(0[¥"

Usuzl0)410)5%™ = 10),4]0)5®"
Uspl1)410)5%" = [1)4]1)5®"

a0 = Tr (1001 p) 10N G, + Tr(1XL] £, [ Measure-and-prepare +/ ]
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(Example:

Input system A is measured/decohered

in [0), |1) basis

Outcome recorded on each B;

\

4
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Theorem statement (almost)

(2 = “quontomt Mockos Llanked”

@L)

Ma\y Conl-mn QT
v A

\So we can take | Q| = O(1).

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,
evolution A — R is approx.
measure-and-prepare.

Allow larger |Q| — smaller error.
Error indep. of total system size!

/
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Theorem statement (almost)

(2 = ‘quontwt Morkow Wlonked,”

@L)

Ma\y Conl-mn QT
v A

\So we can take | Q| = O(1).

Q R
Excluded region: —
“Quantum Markov
blanket”

On all regions R away from (Q,
evolution A — R is approx.
measure-and-prepare.

Allow larger |Q| — smaller error.
Error indep. of total system size!

/
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Quantum Markov blanket, Q

information about 4

Q “blankets” A:

Any information about A that's accessible on
small regions R outside () can be obtained from
a classical measurement on just Q.

Q includes, at least, any region with locally
accessible guantum information about A.

For arbitrarily large environments, you can still
Ccover” A with an O(1)-sized blanket Q !

/Q roughly includes outputs B; with most A

/

Pirsa: 20110059

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,
evolution A — R is approx.
measure-and-prepare.

Error indep. of total system size!

\So we can take | Q| = O(1).

Allow larger |Q| — smaller error.

/
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Theorem statement

/Consider a quantum channel
N:D(A) > D(B, ® - ® By)
For general output subset R, let N
Np =TrgoN : D(A) - D(R)
denote the reduced channel obtained by tracing out the complement R.

D(X) = density
operators on X

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output
subsets R of size |R| disjoint from Q,

3 R|
[INg = Egll. < df |2Indyy o

where £y is measure-and-prepare,
Er(p) = ) Tr(Mep)of
a

for some choice of states g on R. Note {M,} chosen independent of R.

-

Take |R| < |Q|
d, = dim(4)

™~ ] (W
B, B, Bj B,
\ J

| |
¢ R

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,
evolution A — R is approx.
measure-and-prepare.

Allow larger |Q| — smaller error.
Error indep. of total system size!

/

\So we can take | Q| = O(1). y
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Theorem statement

/Consider a quantum channel
N:D(4) > D(B, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ 2@ Kby 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output
subsets R of size |R| disjoint from Q,

. IR
”NR_gR”oSdA 21ndA@
p—-’\v

where £y is measure-and-prepare,

Er(p) = ) Tr(Mep)of

Take |R| < |Q|
d, = dim(4)

N

a
for some choice of states g on R. Note {M,} chosen independent of R.

\

b

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (@,
evolution A — R is approx.
measure-and-prepare.

Allow larger | Q| — smaller error.
Error indep. of total system size!
So we can take | Q| = O(1).

/
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Theorem statement

/Consider a quantum channel
N:D(4) > DB, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ -»p® Retbn 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output
subsets R of size |R| disjoint from Q,

od

where £y is measure- and—prepare

Er(p) = ) Tr(Mep)of

Take |R| < |Q|
d, = dim(4)

|IN: — Erlle < d3 [2Ind
|R R” A AlQl/

N

a
for some choice of states g on R. Note {M,} chosen independent of R.

\

b

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,
evolution A — R is approx.
measure-and-prepare.

Allow larger |Q| — smaller error.
Error indep. of total system size!
So we can take | Q| = O(1).

/
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Theorem statement

/Consider a quantum channel
N:D(4) > DB, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ -»p® Retbn 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M,} and
an “excluded” output subset Q of size |Q|, such that for all output
subsets R of size |R| disjoint from Q, N

Q (\Q Take |R| < |Q]
|INz — Erlls < dji |2Ind d, = dim(4
sl 53 [2nd i g e
where Eg is measure- and—prepare T = 1
. R
Er(p) = ) Tr(Mep)of e

N

a
for some choice of states g on R. Note {M,} chosen independent of R.

\

b

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,

| evolution A — R is approx.

measure-and-prepare.
Allow larger |Q| — smaller error.
Error indep. of total system size!
So we can take | Q| = O(1).

/
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Theorem statement

/Consider a quantum channel
N:D(4) > DB, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ -»p® Retbn 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output
subsets R of size |R| disjoint from Q, AR N

Q(\Q 5 |R| Take |R| < |Q|
[|INg — Erl], < 2Ind, — d, = dim(4
1N = ] @; il )

- — nz \0

where £y is measure- and prepare, 1

. W
Er(p) = ) Tr(Mep)of Q)

.

a
for some choice of states g on R. Note {M,} chosen independent of R.

|

b

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,

| evolution A — R is approx.

measure-and-prepare.
Allow larger |Q| — smaller error.
Error indep. of total system size!
So we can take | Q| = O(1).

/
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Theorem statement

/Consider a quantum channel
N:D(4) > DB, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ -»p® Retbn 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output
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(\Q _ |R| ake |R| < |Q|
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~ Nz \o
where £y is measure- and—prepare 1
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Er(p) = ) Tr(Mep)of Qe
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a
for some choice of states g on R. Note {M,} chosen independent of R.
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“Quantum Markov
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On all regions R away from (Q,

| evolution A — R is approx.

measure-and-prepare.
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Theorem statement

/Consider a quantum channel
N:D(4) > DB, ® @ By)
For general output subset R, let N

D(X) = density
operators on X

@ -»p® Retbn 6 s

NR = TT'R o N
denote the reduced chan@e; o;talned by tracing out the complement R.

Theorem: For any |Q], |R| € {1, ...,n}, there exists a POVM {M_,} and
an “excluded” output subset Q of size |Q|, such that for all output

subsets R of size |R| disjoint from 0Q, N N Tb% hd
(\Q _ |R| ake |R| < |Q|
[INz — Erll. _21ndA@/ dA: dim(A)
~ Nz \o
where £y is measure- and—prepare 1
B (e
Er(p) = ) Tr(Mep)of Qe

.

a
for some choice of states g on R. Note {M,} chosen independent of R.

\

b

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (Q,

| evolution A — R is approx.

measure-and-prepare.
Allow larger |Q| — smaller error.
Error indep. of total system size!
So we can take | Q| = O(1).

/

Pirsa: 20110059

Page 42/65



Supplementary interlude:
proof sketch
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Theorem statement (for states)

ﬁ:onsider any quantum state psp, g, ONAQ B; Q@ ...Q By,.

Theorem: For any |Q|, |R| € {1, ...,n}, there exist states pZ,
probabilities p,, and an “excluded” subset Q < {B;, ..

such that for all subsets R € {By, ..., B, } of size |R| disjoint from Q,

PAR — z Papé X 05
a

LOCC.
for some choice of states states o5 on R.

Note p4, v, chosen independently of R.

We used “one-way LOCC norm,”
\ ||PAR ||LOCC<_ = Mr,?é"?g(c ||(1 X MR)(pAR)”l

., Bp} of size |Q],

< (2nd, D)
- - 410|  da = dim(4)

~

A

On allregions R away from ,
state on AR i approx.

L o
By B; B3
\ )

| |

Q

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (@,
state on AR is approx.
separable.

Allow larger |Q| — smaller error.
Error indep. of total system size!

4

\So we can take | Q| = O(1). y
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Theorem statement (for states)

ﬁ:onsider any quantum state psp. g, o@ Bi® ..Q By.

Theorem: For any |Q|, |R| € {1, ...,n}, there exist states pZ,
probabilities p,, and an “excluded” subset Q < {B;, ..

such that for all subsets R € {By, ..., B, } of size |R| disjoint from Q,

PAR —

r LOCC.
for some choice of states states o5 on R.

y@ﬁ®@
a

Note p4, v, chosen independently of R.

We used “one-way LOCC norm,”
\ ||PAR ||LOCC<_ = Mrgg()g(c ||(1 X MR)(pAR)”l

., Bp} of size |Q],

< (2nd, D!
- - 410|  da = dim(4)

~

A

On allregions R away from ,
state on AR is approx.

B, B; b3

\ J

1 "
¢

Excluded region:
“Quantum Markov
blanket”

On all regions R away from (@,
state on AR is approx.
separable.

Allow larger |Q| — smaller error.
Error indep. of total system size!

4

\So we can take | Q| = O(1). y
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Channel-state duality

The main result may be formulated as a result about either (1) channels with multiple outputs, or

(2) multipartite states.

By B,

A* Channel-state duality
Channel < >
NA—)BlBZ

-

4 B B .

. : imply
Constraints on dynamical < >

properties of channels
(e.g. no cloning)

Reduced channels are
measure-and-prepare?

By B,

Choi state = Channel
(N)

Bi B;

Constraints on static correlation properties of
states (e.g. monogamy)

Reduced states are
separable?
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Channel-state duality

The main result may be formulated as a result about either (1) channels with multiple outputs, or
(2) multipartite states.

(“'Q' c—— %l SV e

Bl BlBZ

B :
A 172 Channel-state duality
Choi state = Channel
Channel < > ™)
NA—)BlBZ
\ * *
A L. By B;
B B; )
. : imply . . : .
Constraints on dynamical < > Constraints on static correlation properties of

properties of channels
(e.g. no cloning)

states (e.g. monogamy)

Reduced channels are Reduced states are
measure-and-prepare? separable?
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Channel-state duality

The main result may be formulated as a result about either (1) channels with multiple outputs, or
(2) multipartite states. Q c Sﬁe AN

Bl BlBZ

B :
A 172 Channel-state duality
Choi state = Channel
Channel < > ™)
NA—)BlBZ
\ * *
A L. By B;
B B; )
. : imply . . : .
Constraints on dynamical < > Constraints on static correlation properties of

properties of channels
(e.g. no cloning)

states (e.g. monogamy)

Reduced channels are Reduced states are
measure-and-prepare? separable?
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Sketch of argument: Warm-up result

S(X) = —Tr(px log px) (entropy)

(how much there is to know about X)
I(X,Y)=5(X)+S(Y)—S(XY) (mutual information)
(how much knowing Y tells you about X)

I(X,Y|Z2)=1X,YZ) —1(X,Z) (conditional mutual information)

(how much more knowing YZ tells you about X than just knowing Y)
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Sketch of argument: Warm-up result

S(X) = —Tr(px log px) (entropy)

(how much there is to know about X)

I(X,Y)=5X)+S(Y)—S(XY) (mutual information)

(how much knowing Y tells you about X)

I(X,Y|Z2)=1X,YZ) —1(X,Z) (conditional mutual information)

(how much more knowing YZ tells you about X than just knowing Y)

f D

For any state pup, . g, for any size q:
There exists region Q < {By, ..., B, } of size |Q| < q such that for all B; & 0Q,

1(4,Bi|Q) < —2log(dy).

\. J
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I(X,Y|Z2)=1(X,YZ) —1(X,Z) (conditional mutual information)

(

/77 I(4,B1]Q) < =2 log(da).

For any state p,p, g, for any size g:
There exists region Q c {B4, ..., B,} of size |Q| < g such that for all B; & Q,

Constructive proof: Build up Q by expanding it one by one.
1) Choose region B; that maximizes (4, B; )

2) Choose region B;, that maximizes [(4, B;, |B;,)

3) Choose region B;, that maximizes (4, B;,|B;, B;,)

|Q|) Choose region B;, , that maximizes (A4, B; |B . lq )

‘el

By chain rule of mutual information,

I(A,B;)) + I(A,B;,|B;,) + ... + (4, Biq|Bi1 ... B; _1) =I(4, By, .Biq) < 2log(d,)

And by strong subadditivity, all terms are posmve So at Ieast one term is small, i.e.
there is some value q' s.t. (4, B; ,|B;, .. Bi,,_) < |QI” 121og(d,). Take Q = B; L Big, -
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I(X,Y|Z2)=1(X,YZ) —I(X,Z) (conditional mutual information)

(

/7 I(4,B1]Q) < 72 log(da).

For any state p,p, g, for any size q:
There exists region Q c {B4, ..., B,} of size |Q| < g such that for all B; & Q,

Constructive proof: Build up Q by expanding it one by one.

1) Choose region B; that maximizes (4, le) L ]
2) Choose region B that maximizes (4, B;, 11)/ @ O

3) Choose region Bl- that maximizes I(A, B; |leBzz)

that maximizes I(A4, B; |B

1—1

|Q|) Choose region B‘IQI

By chain rule of mutual information,

I(A,B;)) + I(A,B;,|B;,) + ... + (4, Biq|Bi1 ... B; _1) =I(4, By, .Biq) < 2log(d,)

And by strong subadditivity, all terms are posmve So at Ieast one term is small, i.e.
there is some value q' s.t. (4, B; ,|B;, .. Bi,,_) < |QI” 12 1log(d,). Take Q = B; o Big,
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I(X,Y|Z2)=1(X,YZ) —I(X,Z) (conditional mutual information)

(

For any state p,p, g , for any size g:
There exists region Q c {B4, ..., B,} of size |Q| < g such that for all B; & Q,

I(A, B;|Q) < 2 log(d,).

Constructive proof: Build up Q by expanding it one by one. %,
1) Choose region B; that maximizes (4, B; ) @ (ﬁ
2) Choose region B;, that maximizes [(4, B;, |B;,)

3) Choose region B;, that maximizes (4, B;,|B;, B;,)

<l o

that maximizes (4, B; |B . lq )

|Q|) Choose region B‘IQI

By chain rule of mutual information,

I(A,B;)) + I(A,B,|B;,)) + ... + (A, Biq|Bi1 ... B; _1) =I(4, By, .Biq) < 2log(d,)

And by strong subadditivity, all terms are posmve So at Ieast one term is small, i.e.
there is some value q' s.t. (4, B; ,|B;, .. Bi,,_) < |QI” 12 1og(d,). Take Q = B; o Big,
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I(X,Y|Z)=1(X,YZ) —1(X,Z) (conditional mutual information)

(

For any state p,p, g, for any size q:
There exists region Q c {B4, ..., B} of size |Q| < g such that for all B; & Q,

I(A, B;|Q) < 2 log(dy).

Constructive proof: Build up Q by expanding it one by one.
1) Choose region B; that maximizes (4, B; ) O @

2) Choose region B;, that maximizes [(4, B;, |B;,)

3) Choose region B- that maximizes I(4, B;,|B;, B;,)
7) @%

that maximizes I(4, B; |B . lq )

|Q|) Choose region BLIQI

By chain rule of mutual information,
I(A,B;)) + I(A,B;,|B;,)) + ... + (4, Biq|Bi1 ..B;i ) =1(A, By, .Biq) < 2log(d,)

™ s / . .
And by strong subadditivity, ali terms are posmve So at Ieast one mall, i.e.
there is some value q' s.t. (4, B; ,|B;, .. Bi,,_) < |QI” 121log(d,). Take Q = B; L Big, -
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I(X,Y|Z)=1(X,YZ) —1(X,Z) (conditional mutual information)

( )
For any state p,p, g, for any size q:

There exists region Q c {B4, ..., B,} of size |Q| < g such that for all B; ¢ Q,

I(4,Bi|Q) < -2 log(dy).

Visual constructive proof: To find the region @, optimize over paths 1(4: Q)
below.

25(A
)
X

X]IXIX]

I(A: By) + 1(A: By|B,) + I(A: B, |B, B,) + I(A: B|B,ByBy) = I(A:B,B;B3By) ¢ 3 4l
I(A Bz) + I(A BIIBZ) + I(A BSIBZBl) + I(A B4|BzBlB3) - I(A BleBgB4)
=2 S(A) (if pure)
Each node is a candidate region Q. Arrows indicate inclusions. Each path is an expanding subset of
outputs. Strategy: Gradually expand Q to learn as much as possible about 4, until further expansion yields

no further knowledge. Stop there to obtain final Q.
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25(A
)
X

X]IXIX]
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I(X,Y|Z2)=1(X,YZ) —I(X,Z) (conditional mutual information)

4 )
For any state p,p, g, for any size q:

There exists region Q C {Bq, ...

Visual constructive proof: To find the region @, optimize over paths I(A‘i Q)
below. G

XXX

I(A Bl) + I(A B4|Bl) + I(A leBlB4) + I(A B3|BlB4Bz) = I(A 31323334)
I(A Bz) + I(A BIIBZ) + I(A BSIBZBl) + I(A B4|BzBlB3) = I(A BleB3B4)
— ZS(A) (if pure)

o 1 2 3

Each node is a candidate region Q. Arrows indicate inclusions. Each path is an expanding subset of
outputs. Strategy: Gradually expand Q to learn as much as possible about 4, until further expansion yields

no further knowledge. Stop there to obtain final Q.
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Implications for many-body dynamics?

Constructive method identifies “basis”
{M%} on A that is effectively

measured/decohered by the rest of the

system.

Helps identify emergent classical
variables in many-body systems?
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Implications for many-body dynamics?

Example: Hydrodynamics

In charge-conserving random circuits, the - }
observable “measured” on A roughly @
coincides with the charge (confirmed ~ <
numerically). @
¢ /
(5
Explore more examples? Apply analysis |

where we don't already understand
what's going on?
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Implications for many-body dynamics?

: : U0
Example: Hydrodynamics o | \ (
e e T \ ol
!
In charge-conserving random Zsiéchits,\the
observable “measured” on A roughly
coincides with the charge (confirmed

numerically).

Explore more examples? Apply analysis

where we don't already understand
what's going on?
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Future work

* How tight is the bound? How can it be improved when
assuming additional structure to the dynamics, like spatial
geometry or local conserved quantities?

* Compatibility theory
* What many-body examples can we explore?

* Use algorithm to identify emergent classical variables in
many-body systems?
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Thank you!
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