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Abstract: The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numericaly.
Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum
computers. In this talk, | will discuss recent work which carried out a detailed analysis and optimisation of the complexity of variational quantum
algorithms for finding the ground state of the Hubbard model, including extensive numerical experiments for systems with up to 12 sites. The depth
complexities we find are substantially lower than previous work. If our numerical results on small lattice sizes are representative of the somewhat
larger lattices accessible to near-term quantum hardware, they suggest that optimising over quantum circuits with a gate depth less than a thousand
could be sufficient to solve instances of the Hubbard model beyond the capacity of classical exact diagonalisation. | will also discuss a
proof-of-principle implementation on Rigetti quantum computing hardware.

Thetalk isbased on joint work with Chris Cade, Lana Mineh and Stasja Stanisic ( arXiv:1912.06007 , arXiv:2006.01179).
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The Fermi-Hubbard model

An iconic model in condensed-matter physics for strongly correlated electronic systems

Predicted to be one of the first targets for quantum computers in the NISQ era

H=-t Z (a;rga,jg + a;r-ga,w) + U annm

(i,3),0 / k ]

Hopping term Onsite term

Task: find the ground state of H

Exact solution of a Hubbard model instance with 17 fermions on 22 sites
required 7TB of memory and 13 TFlops (Yamada et al '0S)
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Variational Quantum Eigensolver (VQE)

The VQE approach tries to find the ground state of a Hamiltonian H by optimising over quantum circuits
to minimise the energy of the state produced with respect to H

We need to make many decisions about the algorithm:
1. How to represent H on a quantum computer?

2. What family of circuits (“ansatz”) to optimise over?
3. How to implement the circuits efficiently?

4. Which classical optimisation algorithm to use?

Here we make choices for each of these; calculate the complexity in detail; and carry out numerical
experiments to determine how well the algorithm will perform.

D
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Representing the Hubbard model

We use the Jordan-Wigner transform, which associates each site and spin-type with 1 qubit

An nx x ny lattice requires 2nxny qubits
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Variational ansatz

We use the Hamiltonian Variational ansatz (Wecker et al '15)

- Splits the Hamiltonian into commuting terms (horizontal x2, vertical x2, onsite)
- Starts in the ground state of the noninteracting Hamiltonian (U=0)

+ Can be efficiently prepared using Givens rotations (Kivlichan et al "18) in depth nxny - 1
» Alternates layers of time-evolution according to different terms, for different times

» Each layer is of the form

e'it\,f.zH\,:z eitH2 Hy, eitv1 Hy, eitH] Hpy, eitH() Hp
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I
Efficient implementation

To help with the long Jordan-Wigner strings, we use fermionic swap networks (Kivlichan et al "18)

These effectively rearrange the Jordan-Wigner ordering, allowing us to implement all of the vertical
hopping terms relatively efficiently
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Efficient implementation

The final 2-qubit gate depth to implement one layer of all required interactions is:

Architecture

Ansatz circuit depth per layer

Fully Connected

2n, +1/2n. + 2

4x4/4x5:9

bx5/5x6:12
6 x6:13

Nearest Neighbour

4n, +1/4nx + 2

4x4/4x5:17

bxh/hxly22
6 x6:25

Google Sycamore

6n, +1/6n,+ 2

dx4/4%x5:25

3xb/ox6:32
6 x6:37
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Number preserving ansatz

Now all the gates that occur in the quantum circuit are of the form

1 0 0 0
0 cosf@ isinf 0O
0 2sinf cos® O
0 0 0 e

UNP(91 @) =

» In the Hamiltonian Variational ansatz, the parameters have relationships between each other -
we have at most S independent parameters per layer

+ But we can also allow all the parameters to be independent

« We call this the Number Preserving ansatz

PHASECRAFT

Pirsa: 20110045 Page 9/20



Efficient implementation

o o Next, we need to measure the energy of the states
produced efficiently

We can do this by splitting the hopping terms into 4

commuting parts, and measuring all the terms in each
commuting part simultaneously
' ' ' ' To achieve high accuracy in the energy estimate then
! 1 1 ! needs many measurements (e.g. error 0.01 -> ~103

measurements)
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Classical optimisation algorithm

Finally, we need to decide what method to use for classical optimisation over quantum circuits

Many optimisation techniques don’t work if we use realistic measurements because of statistical noise

Two methods that do work:
» Simultaneous Perturbation Stochastic Approximation (SPSA)

- “Gradient descent along a random line”

» Coordinate descent (CD)

- aka sequential minimal optimisation (Nakanishi et al '19), Rotosolve (Ostaszewski et al "19), Jacobi
diagonalisation (Parrish et al '19), ...

- Uses polynomial interpolation to exactly minimise the energy in terms of one parameter at a time

—
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Numerical results

—a— 1 x n HV -+~ 1x nEHV %1 x nNP
—a— 2 x nHV -2~ 2 X nEHV eox--- 2 % n NP
We evaluated the performance of VQE on —+—3xnHV -4-3xnEHV ..x.3xnNP
systems up to 12 sites (24 qubits) in classical
simulation .
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Numerical results
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Numerical results

1072
Third: effect of errors in the quantum circuit ol []] ' ‘ ' : 'CD 1
—— CD+ED
——  SPSA
Figure shows a 2x3 lattice with 103 depolarising 4l —— SPSA +ED
noise, including the effect of error detection by

checking occupation number
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Experimental implementation

We implemented VQE for the simplest nontrivial ' —{x RY (-3) | RZ(¢)|————+—{ RX(9)] e
case of the Hubbard model (2x1) on Rigetti | 1 J I e \ Rl I
| - 11 [:(}‘[)) 1 W 11 |
Aspen-4 and Aspen-7 quantum hardware | | I |
: | RY(—Z)|—4— . +—{RXO) | 4—e—{H]+—,
] : T T
As well as the standard implementation discussed “~ -~~~ - - Soes SeEEaEs i
above (4 qubits), we considered a compressed
implementation on 2 qubits
[ — : o ="
—RY (-%) m RX(0) rr| H —
Compression uses that the Hubbard Hamiltonian | I I |
preserves occupation number for each spin-type | {RY (-%) b RZ(¢) —D— RX(0) *{ H
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Experimental results

Heatmaps showing the performance of the algorithm:
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Experimental results

Extracting physically meaningful results from the ground state:
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Conclusions

The VQE approach can find ground states of small instances of
the Hubbard model efficiently

If these results are representative of the situation for larger
systems, the ground state of a 5x5 Hubbard instance (beyond
the capacity of classical exact diagonalisation) could be found
with quantum circuits of 2-qubit gate depth <400 (in a fully-
connected architecture)

The algorithm works when implemented on a small quantum
computer and can produce physically meaningful results...

Though there’s still a long way to go before we outperform
classical methods!
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Numerical results )
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We evaluated the performance of VQE on —a—3xnHV -e-3xnEHV ..x.3xnNP
systems up to 12 sites (24 qubits) in classical
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Experimental implementation

We implemented VQE for the simplest nontrivial ' —{x RY (-3) | RZ(¢)|————+—{ RX(9)] e
case of the Hubbard model (2x1) on Rigetti | 1 J I e \ POl I
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As well as the standard implementation discussed -~~~ -~ ~---- " e i
above (4 qubits), we considered a compressed
implementation on 2 qubits
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