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Introduction

Goal: Determine the phase space of gravitational spacetimes with boundaries

Examples of boundaries
- Asymptotic boundary (e.g. .F 1)

- Causal boundary (e.g. horizon of black holes )

Why?
Holographic dualities

- Entropy problem

Describing matter falling from the point of view of the BH horizon

Gravitational memory effect

Phase space = states such that
- Structure of boundary, i.e. behaviour of the fields near that boundary
- Dynamics

-

0
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0

Way to organise the states in the phase space is to consider the symmetry group preserving
the boundary

The presence of a boundary breaks the full diffeomorphism invariance.

- Some diffeo are forbidden (those not preserving the boundary)

- Some diffeo are pure gauge (they have no effect on the states)

- Some diffeo preserve the boundary but change the state k

Us: Study the phase space when the boundary is a codimension one null hypersurface in the bulk
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Table of contents
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-
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Phase space - Counting the degrees of freedom

Pure gravity in d dimensions with a boundary
dd+1)

components

- d components are gauge fixed (consistently with boundary structure)

d(d — 3)

- T components correspond to the propagating gravitons - bulk dof k‘

- d components correspond boundary dof - codimension 1 function, due to the residual

gauge symmetries acting non trivially on the boundary

Depending on your gauge choice and boundary conditions you might kill some dof !

O
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Program

Goal: Systematic treatment of the boundary degrees of freedom on a generic surface and their

interaction with the bulk degrees of freedom

1. How to realise the maximal number of boundary dof?
2. What do they represent?
3. Relation with bulk dof ?

First stI: use a model where there is no bulk dof.

3d EinStein gravity because simple yet non trivial: solutions with Killing horizons

O
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3d gravity

Maximal phase space content : boundary dof = 3 codimension 1 functions

Coordinates:

- Null hypersurface at r = 0 \
. v / r>0
- « Advanced time » v

- Transverse direction 27 period: ¢

BoundarIstructure given by metrics of the form :
ds* = — Fdv? + 2ndvdr + 2 fdvde + hdp*
with n(v, ¢b) and

F(v,r,¢) = Fo(v, ) + rF (v, ) + O(r?)
f,r, @) =folv, ) + rfi(v, ¢) + O(r?)

h(v,r, ) = Q(v, ¢)3 + rhy(v, ¢) + 6(r?)

-

0
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Symmetries
Looking at symmetries preserving the expansion -> & such that g + ‘fg is still of the same form
&=T
—d e foly .
=20l =Wt ¢ + O(r
= s (1 +om =25t ) + o0

rnd,T 1 rzr;n'zl 9,T

crf) =Y-
Q2 2Q4

+ 6@

With T(v, ), W(v, ), Y(v, )

The functions in the metric expansion are changing under the action of £

Jon
o:n =Ton + 200, T —nW + Yo,n — de T

Ex: )
8y = 0T fy) + 0,(Y o) + Q%0,Y + (%) 0,T

Note: if we go to the corotating frame -> f, = 0 = Y = Y(¢)

0
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3d gravity

Maximal phase space content : boundary dof = 3 codimension 1 functions

Coordinates:

- Null hypersurface at r = 0 \
. v / r>0
- « Advanced time » v

- Transverse direction 27 period: ¢

Boundary structure given by metrics of the form :
ds* = — Fdv? + 2ndvdr + 2 fdvdep + hdp*
with n(v, ¢b) and

F(v,r,¢) = Fo(v, ) + rF (v, ) + O(r?)
f,r, @) =folv, ) + rfi(v, ¢) + O(r?)

h(v,r, §) = Qv, @)* + rhy(v, p) + O(r?)

-

0

Pirsa: 20110044

Page 10/33



o0 e
M-l & | &

= Talk Perimeter (page 8 sur 30)

Symmetries

Looking at symmetries preserving the expansion -> £ such that g + ¢ is still of the same form

&=T

ra,T h

_ 2 ey Jo

H= rio, ' — W) +ﬁ (}ﬂ + dq,,}}' - Ry ) + @(F‘3)
rnd, T rzfp'zld g

§ =Y -+ + 00

With T(v, ), W(v, @), Y(v, )

The functions in the metric expansion are changing under the action of £

o

Jo

Ex: 2
Y= 0(TF)+0,Yf)+Q2Y+(2) o,
(f{]F ¢ V( ﬂl) r.r( f()) v ( QO ) G ¢

Note: if we go to the corotating frame -> f, = 0 = ¥ = Y(¢)

O
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Symmetry Algebra of £

[£1: $2)adj.bracket = [£1> &:lDirac — 6261 + 618>
[E(W), T, Y)), E(W,, T, 1)) Iadi. =&(Wpo, Ty, ¥1o)

Diff(C,) @ Weyl(C,), where C, = null cylinder parameterised by v, ¢

Are those symmetries pure gauge or not? I

-

O
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Symmetries
Looking at symmetries preserving the expansion -> & such that g + ¢ is still of the same form
g =if
r°a,T h
. ¢ . - Johy 3
POl = Wit | i+ g~ + O(r
4 202 (f| 'l o2 ) )
riceT rzr;rhldrﬁT
£ =Y — + —+ O(r
G 3 708 (r)

With T(v, ), W(v, @), Y(v, ¢)

The functions in the metric expansion are changing under the action of £

Jon

o:n =Ton + 200, T —nW + Yo,n — o7

0,7
Ex: f 5
8fy = 0,(Tfy) + a,(Yf,) + Q%Y + (é) 0,T

Note: if we go to the corotating frame -> f, = 0 = ¥ = Y(¢)
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Charges

Generalised Noether theorem: gauge symmetry <-> (codimension 2) I)oundar'y charge O
If QO = 0, the symmetry is pure gauge; If Q # 0, the symmetry is physical ( or large );

However, no absolute charge formula in gravity, we rather compute a variation around a point in the
phase space

¢

0Q; = J @*[g; hldx,, with
codim 2 boundary

aw=Y_%

¢ 826G

: 1 ;
(hd[y ngb] - V[*“h;’] — Eh vikgvl 4 glu V;_h“]" — gle V”h),
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Charges

" 162G ),

1. [* ] 15O 5
80, —l dop | WSQ + Y5Y + T(—Zéx— 5 + %51( +9, (ff;l_z) i ﬁ)
{ 2

T, W, Y are large gauge symmetries

I,Y, yare giveizin terms of the metric components and are independent of each others
< Far BTZ. L' =2k

- Y est proportionnel a 8vp

- y « expansion of the null hypersurface

n

-

0
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Integrability?

l
lonG

25 5Q )
8Q; = J dp |WeQ+ Y8Y +T —26I—F59+%5T+6¢(ﬁ) )+ﬁ

0 Q? n

- When the charges are integrable, i.e. Q‘: exist, it is the Hamiltonian associated with the flow

generated by &.
- Non integrability is related to the presence of a flux through the boundary

This flux is given by the non integrable part (which has some ambiguities in its definition) - see later

In 3d, what such a flux could it be, reminding that there is no propagating dof?
Actually, we realise that a state dependent redefinition of the symmetry generators would make the

charges integrable.
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Making the charges integrable

b

[ o SO\ x5
o‘Q==—J dep | WeQ + Y6Y +T —251—1‘59+@51’+a¢("f“—1)+ﬁ
* 16nG ), Q7 Q? n

o

WeW-Tr—2 3,7, ¥P=Y+T—, T=yT,
'I i ¢ 02 £
N oy
50, = dg (Wo + 957 + 167 ) With 2 = In -
167G ), 7
5 s " 1 [* A . 3
Integrable if 7 = 5W = 67 = 0, 0. = — j do (W§z+YY+T9°)
167G J,

The boundary dof are labelled by ((v, ¢), Y (v, ¢), P(v, ¢h))

Whatify =02 = T=T, 5Q=J

WEQ + T8(=2y) + ¥8Y
52

-

0
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Charge algebra

6,0 = {0s0,} = bll’*‘ﬂadj. + central extension

{Qv, ¢), v, ¢} =0,
(PO, ), P(v, 9"} =0,
{Q(v, 9), P(v,¢")} = 162G 6(¢ — ¢),

Heisenberg algebra

(Y0, $), Y. )} = 162G (Y, 49, — Y(v.)0,) 3(p — '), | DIffLS)

{Y(V, ‘;b)s Q(V, ‘;\6!)] = 1636 Q(V, (‘b) d,_f,‘s(‘?s - ¢’) )

(Y. $), POv, ¢} = 162G (_@(v,¢>a¢, - P, §) 0, + 2%:) 8~ ).

Does it exist other slicing? Yes, infinitely many

-

0
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Fundamental slicing

Y =-20,Q-Q0,7+ S and W=W-20,Y+7Y0,2,
Pt
T=T-0,QY).

2r
80; J dp (WsQ + Y68 + ToP)
0

~ 162G

If 5T = 6W = 8Y = 0, the charges is integrable ;=

Algebra: Heisenberg direct sum with Diff( )

I

l 2z _ B
j dp (WQ+YS +TP)
167G ),

-

{Q(v, §), Q(v, )

I

AP, @), Pv, )} =0,{Q(v, ), P(v, ")} = 162G 5(¢p — @),

}
{SW, ), Q(v, )]}
)

0
(S, ), P, ¢)} =0
(S, ¢). 5. ¢)) = (

S0y — SO, )y ) 5(p — §).

Il

0
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General method
50 = inﬁde‘f"z.x, i=12,-,N.
In basis where é; = (), one has Q = J,u‘Q,- s

Consider Q;- — Q{-IQ-, d"Q,], one has 6Q = Jﬁiﬁéfdd"zx, with ﬂ’I:

Note that the Q‘s don’t necessarily form an algebra.

5
50

0
——— ﬂ‘

i

-

O
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Example of Lie algebra: Virasoro

Start: Fundamental slicing

I

Step 1: Fundamental slicing -> Two currents algebras and Diff(S’)

I i i
I (@F26k0,2 ) and W=e*+e™, T=2Gko,(e*—e7)
J

Charge: 5Q; = j dep (e8It + ¢ 8) + ¥568)
0

Algebra:
2050 9)) = £ 20,600 = ),
(I, ¢), I, )} = 0
(SO, ). S} = (S0, ) 9y = S, ) 9y ) 8l — )

-

0
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Step 2: Current basis -> Virasoro

L*(v,§) = ¥ [75(v, £ 4))]2 + P00 (v, £ )

4
and e*(v, ) = (%Ji(v.ff)) F ﬂi%) (v, £ ¢)

2r
Charge: 5Q; = J dpp (y*6L* + 5L~ + Y5S8).
0

Algebra:
k
(L*v, ), L*(v, ")} = (Li(v, $)0,— L*(v, ) 0 + Tﬂﬁiﬁ;},,) 35— )

(L*(v, ), L¥(v, )} =0,  {L*(v,¢),S(v,¢)} =0
(SO S0, )} = (S0, ) 8y = SO, )0y ) 86 = )

-> Generating a central charge

Similar construction leads to BMS; + Diff(S")

-

O
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Recap’ 3d case:

Boundary structure such that we have the maximal realisation of boundary dof
2. State-dependent redefinition of the symmetry generators, we have shown that the charges
can be make integrable.

3. Various examples of choices leading to various symmetry algebra

I

In the paper, we also have treated the 2d Einstein-Dilaton gravity
-> Also no local dof -> only boundary dof

-> switch on the maximal number 2 codimension 1 function

-> One slicing where the symmetry algebra is Heisenberg algebra

O
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D

4d gravity

4 o
oy Jd xy/—2(R) .

Bulk dof: 2 gravitons

Action: S =

Boundary dof: 4

Null hypersurface at r = 0 and coord: (v, r, x4 where A = 1,2
Gauge g,, =0, g.,=0
Expansion:

ds® = n H dv? + 2ndvdr + 2n U 4, dvdx® + q,gdx*dx®

K
With: lim (—— + q”?.,/,(zfg) =0

r—=+0 H

H =n QP fy+r% + O[],

Us=f+1r0,+ 0[r?], and take corotating frame g, =0ef;=0
: “lr=0

Gap = Qg+ i+ O[r?].
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Symmetries

& = T(v, x*)
E" = —rW(v, x") + 6(r)
&P =Yt + 6(r)

Algebra
[é:(Tia W, Y1), E(T5, W, Yé‘)] = &(T5 Wy ¥7y)
T, =10, -T,0,T, + Y?‘l«aﬂ_ Y3o,T,

A B A B A
YA = PRa Vi~ P20, ¥4 .

-

O
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Charges

Defining:
5 0,82 an
det Q,p = Q°, Shear/News: N,z := dl.QAB—?QAB, I'= ?—T
Charges:
a8 0,8 "
00 = OQ|FT+W—-TI+T— )+ T —-2000Q+—05n )+ Y'6Y
3 & Q n A

1

T(v, xb), W(v, x*), YA(x?) are large gauge symmetries -> 4 boundary dof

-

O
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_;’ e E? ':-5:' Q,
0,0 9.0 1
News 5;1 = I 50 (dl.T+ W—TI + T?) +T (-2@,.59 + ‘—&;) + Y5Y, - ES!N""”&SEMT
' 52 n
Casewhere N,;, =0 (Ex: Q= @ y;B ) What if 3,2 = 0?
T=T

8 0,Q

W=W-TIC+0T+T Q p T=00QT,
60 = I W6Q + T5(—20,Q) + Y45,

Charges 52 :

50 = J WoQ + T6P + Y46,
52

Case where N, # 0

. " 1 Q .
50 = j WoQ + TP + Y45 Y,, — —=———=NB5Q, , T
& 2 0,Q

One has that N, is traceless so there is no way to write some scalar involved in 7" which are gonna

make the charge integrable

= N, is responsible for the fact that the charges are intrinsically non integrable

This is related to the fact that there is some true flux through the surfaces
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Algebra of non integrable charges

We have intrinsically non integrable charge -> Use Modified Bracket (Barnich/Troessaert)

_____

-
-

. _ ~ 7 o hw _ nf
0,0 '__._{.QS-*-QI}'_ le-f'ladj. + K, = 6,0; + F{5,8) = {Qé’ L= Q[l"‘f]adi. t &

,,,,,

Q'-> Q'-N
Ambiguities: F = Q' + 6N

Kie = Kyg + 0N, = 0, Ne+ Nig ;.

Q' =0, T+ W)sQ — T(QI' +20,Q) + YA5Y,

9,0 1 -
Fe=TQWT +—-=5In(7 Q) + =Ny ,6Q"")

Charge Algebra is the same as the KV without a central charge

-

0
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Flux is the non integrable part

1. No central charge

2. When 6, ¢ = d,¢

One obtained the generalized conservation equation

d
EQ&’ == F,(5:8)

-

O
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_;’ X E?- A
Imposing further conditions
ds®> = @ nrdv? + 2ndvdr + 28, rdvdx* + Q, zdx*dx® + 6(r*)
p=1=22m=0
We have 5:1 = 0,(n T) — Wn + Yian=>W= I,T Instead of 4 symm. Generators, we have 3

2. Constant surface gravity

1_
Generator of the null hypersurface: £“ =d, —r —¢ 9, T + o)
2

1
We have k = — Eff? +0,Inn, 0k =0= 0*T+kd,T =0= T =T + T'(xY)e ™"

1 + 2 = Symmetries found by Donnay et al. (1607.05703) and Chandrasekaran/Prabhu (1908.00017)
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Conclusion

Recap’

- We have switched on the maximal number of boundary dof 3d gravity: d functions of codimension 1
- There exist always integrable slicing (mare than one). One of them being this fundamental slicing:

Heisenberg direct sum with Diff(Sd"z)
- In 4d, we have seen that the presence of News make the charge intrinsically non integrable
- Choice of gauge or boundary condition can kill some of the boundary dof

Proposal
No propagating dof passing through the boundary <-> Existence of the fundamental slicing where the

charges are integrable

Proofin p.'%gress
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Further questions?

1. What does slicing represent physically?
How those are related to the existing boundary conditions for these cases?

2. Surface at infinity where the metric diverges?

3. What does this apparent flux represent (when you do not change the slicing)?

4. In the case of integrable charges, there are not conserved. What can be the dynamics
of these boundary dof?

5. Generalisation to timelike surface

h

-

0
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Thanks!
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