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‘GW100521 may be an intermediate mass ratio inspiral

ABSTRACT
1 is the first confident observation of a bina
n the lack of observational constraints at these masses, we analyze GW130521 cons:

20

two different priors for the binary’s masses: uniform in mass ratio and source-frame total mass, and
uniform in source-frame component masses. For the uniform in mass-ratio prior, we find that the
compaonent i i and m5" = 1615 M The uniform in compon

Nov 20

prior .. There is a low-mass-ratio mode (g < 4) wi

=
fo

100715 My and mg" 77 o and a high-mass-ratio mode (g = 4) with m§ 166135 Mg and

mye = 16+MM, ! he two modes have nearly equal p . the maximum-

likelihood parameters are in the high-mass ratio mode, wi 714 = 16 My, and

pal-to-noise retio of 160 These results

by pair-instability in supernove. Our results are inconsistent with those publis

{2020b}. We find that a combination of the prior used and the constraints applied may hav

that a s from sampling the s mode. An accretion flare in AGN J124942.3 4.3

was observed in possible coincidence w W190521 by the Zwicky Transient Facility (ZTF). We
ort parameters assuming & common origin: however, the spatial agreement of GW190521 and the

M flare alone does not provide eonvincing evidence for the association (In B )

arxXiv:2010.12558

Keyuiords: gravitational waves — black compact binary stars

8v2 [astro-ph.HE]

1. INTRODUCTION 2019; Abhott et al. 2019b), with many additional ean-

55

- " 1 {ates awaiti public: n (LVC 20!
Gravitational-wave astronomy began with the ol didates swaiting publication (LVC 201

vation of GW150914 (Abbott et al, 2016) by the twin With the exception of the marginal BBH candi-
LIGO-Hanford and Livingston observatories {Aasi et al dates GW151205 and 170817-+03:02:46U

2015} wi 30M, black holes, signif- 2019b; Zackay f"

icantly heavier tha tions were consiste

ray binaries {Corr: ponent black hole

et al 20189¢). This observed li sy hint at the e

"

binary black holes (BBIs) opened a new window into
stellar evolution (Taylor & Gerosa 2018; Dvorkin et al tenee of an upper mass gap (Abbott et al. 2019¢; Roulet
2018 & Hotekezaka 2020) and even sparked ro et al. 2020). Formation models which include the ef:
fects of pulsational pair instability supernovae (PPISNe)

arXiv:2010.1

newed interest in primordial black holes as a component

of dack matter (G  20%0: Nilz & Wang O Pair-instability supernovno (PISN} in stellar evo-

c

2020, Abbott et al. 2019a). Since then, the Virgo ob lution preclude the direct formation of a black
with remnant mass ~ 50-120My, (Yoshida et al. 201

ingr worldwide observatory network and over a dozen bi- Woosl 7 2017; Belczynski et al
2019; Wo
al d

servatory (Acernese et al has joined the grov-

nary black hole mergers have been observed (Nitz ¢
2019a,b, 2020; Venumadhay et ul. 2019, b; Zacks 2020)
On May 2Ist, 2019 220 UTC, GW1903521
was detected by the Py > -latency analy
Alexander H. Nitz sis (Nitz et al. 2018a; Dal Canton et al. 2020}, produc-
ing a 765 deg® Bayestar sky localization (Singer & Pric
2016). Continued monitoring of the low-latency localiza-

Pirsa: 20110043 Page 3/54



Outline

Gravitational-wave Astronomy
o summary of current observations

Discovery of GW190521

o  Possible EM counterpart
GW Bayesian Inference
Unexpected Results
What are the parameters of GW190521

o implications for formation scenarios
o implications for EM flare coincidence

Comparisons to prior results and sources of systematic error
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Advanced LIGO & Virgo Observing runs

e First observing run (O1): September 12, 2015 - January 19, 2016

o Hanford and Livingston only
o  First detection of gravitational wave, GW150914; from a binary black hole merger

e Second observing run (O2): November 30, 2016 - August 25,2017
o Virgo joins the network
o  First detection of binary neutron star merger GW170817; also first multimessenger
observation

e Third observing run (O3): two periods

o O3a: April 1, 2019 - October 1, 2019
o O3b: November 1, 2019 - March 27, 2020
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A quickly growing population of observations

https://arxiv.ore/abs/2010.14527

Period from April - Oct 2019 (only
~half the data set)

~ D0 observed mergers, vast

majority are binary black holes
o  Only a single “BNS” observed

n
=
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=
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g
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O

500 1000 1500 2000
Effective BNS VT [Mpc?® kyr]

LVC, GWTC-2, https://a
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Masses in thie Steiniar Graveyard

in Solar Masses

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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Formation Scenarios for Binary Black Hole Mergé®
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Discovery of GW190521
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CAVARIILPA

Hanford Livingston

Observed on May 21, 2019 at
03:02:29 UTC

Initially identified by PyCBC
Live CBC search and generic
¢WB search, confirmed by

Frequency [Hz]

several others
Reported and sent to observers
in O(minutes) as 8190521g i 35 040 045 050 055 060030 035 040 045 050 035 060030 035 040 045 050 055 060

Time [s] Time [3] Time [s]
2 . .
~ 800 deg* sky localization. LVC, Phys. Rev. Lett. 125, 101102 (2020)
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Hanford Livingston

Observed on May 21, 2019 at
03:02:29 UTC

Initially identified by PyCBC
Live CBC search and generic
¢WB search, confirmed by

Frequency [Hz]
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~ 800 deg* sky localization. LVC, Phys. Rev. Lett. 125, 101102 (2020)
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Total Mass (Solar Masses)
LVC, GWTC-2, https://arxiv.org/abs/2010.14527
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Potential Electromagnetic Counterpart?
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e C(Continued by Zwicky Transient Facility 56200 56300 56400 58500 58600 58700 50800 58500
MJD

o EM Flare observed in spatial coincidence

~ 1 month later

o AGN J124942.34+344929 (ZTF19abanrhr) Graham, et al. Phys. Rev. Lett. 124, 251102
S . https://arxiv.org/abs/2006.14122
e The merger may have occurred within the disk

of an AGN

Pirsa: 20110043 Page 16/54



LVC: GW190521 as a hierarchical merger?

Primary BH ~ 85 solar masses

Secondary BH ~ 66 solar masses

90-99% probability that at least one BH

is between 65 - 120 solar masses

o Pair-instability Supernovae may

prevent formation of BH remnants
between ~50-120 solar masses
Suggests a possible hierarchical

merger

80 100 120
mi[Mg]

LVC, Phys. Rev. Lett. 125, 101102 (2020)
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Questions

How consistent are the locations of the EM flare and GW
observation?

If they are from a common source, does this affect what we infer
about the source parameters?
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Binary black hole parameters

Possible BBH parameters (#):
e Component masses m, m, (2)
e Dimensionless spins of components ., , (6)

o If spins are misaligned with orbital angular
momentum L, get precession

e Location & orientation (6)
o right ascension, declination, & distance

inclination (angle between line of sight and L at a
fiducial GW frequency)

o orbital phase & polarization

e Orbital eccentricity, but in this analysis we assume
circular orbits
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m;=30.0M, |X1| =099 y13=0"
mz=30.0Mg [X2|=0.61 X2=0°
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Bayes’ Theorem

e Bayesian inference is used to estimate GW's source parameters. » Prior: Represents our state
. . of knowledge about the
e Assume a signal h exists in some data d. true parameters before

measuring the data
e Probability that the signal has parameters 8§ ={m_, m,, ...} is:
Likelihood: The probability

of observing the data
assuming that a particular

p(d|1§, h) p(1§|h) set of parameters is true.

dh >osterior: Represents our
p( ‘ ) state of knowledge about

the parameters after
measuring the data.

p(d|d, h) =
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Bayes’ Theorem

e Bayesian inference is used to estimate GW's source parameters. » Prior: Represents our state

: . of knowledge about the
e Assume a signal h exists in some data d. true parameters before

measuring the data
* Probability that the signal has parameters 8§ ={m_, m,, ...} is:
Likelihood: The probability

of observing the data
assuming that a particular

p(d|1§, h) p(§|h) set of parameters is true.

ah Posterior: Represents our
p( ‘ ) state of knowledge about

o as the parameters after
Likelihood )
— -—m measurmg the data_
Evidence

p(d|d, h)|=
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Evidence

e Marginalizing the likelihood over all parameters yields the evidence:

p(dl) = [ pdld R)p(dln)ad

The evidence can be used for model selection. Taking the ratio of evidences for two models yields the

Bayes factor:
p(d|B)
p(d|A)

e A Bayes factor > 1 indicates model B is favored over model A

B(A, B|d) =
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Likelihood

e The likelihood function requires both a signal model and a noise model.

e In GW analyses it is common to assume wide-sense stationary (WSS) Gaussian noise. In that case:

d; — hi(9), d; — hi(5)>
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Likelihood

e The likelihood function requires both a signal model and a noise model.

e In GW analyses it is common to assume wide-sense stationary (WSS) Gaussian noise. In that case:

Ng

Z <di ~ ha(9), d; — hi(5)>

frequency (Hz)
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Stochastic samplers are used to sample the parameter space
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mi (Mo) = 35.453

Z
S

862 = (°W)

L=
TE+
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src
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Example:

GW150914
posterior

A. Nitz & C. Capano, gwcatalog.org/top30_bbh
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A complicated parameter space...

t =1.26337

¢ = 281295

Pirsa: 20110043

Numerically marginalized

polarization

(= 1.19+133

I

¢c = 0.6823:30
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Our analysis

Use PyCBC Inference with Dynesty nested sampler (20 - 40 000 live points)

Two waveform models: IMRPhenomXPHM & NRSur7dq4
Assume circular orbits

Prior:
o Uniform in comoving volume, isotropic sky location
o Isotropic in orientation
o  Spins: isotropic in orientation, uniform in magnitude in [0, 0.99)

Try two mass priors:
o uniform in source-frame total mass & mass ratio* q
o uniform in source-frame component masses

*We define q = 1
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Results: Mass prior comparison

M

Uniform in M>¢, g
0 20 A El Uniform in m™, m3™

o) 15 H
=
o ’ (%)
BN 10 A

S 40 A

20 A = &
100 150 200 150 200 180°
mi‘,rc (Mo) More (M ) )?1

Orange regions indicate
expected PISN mass gap

We find posterior support at g ~11 (m, ~170M_, m, ~16M )
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Likelihood surface

(Mg)

Src

100 150 200
mi' (Mo)

Waveform model: IMRPhenomXPHM
Prior: Uniform in total mass and mass
ratio
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Signal-to-noise ratio F’

p* = 1/2(likelihood ratio)

155

15.0

14.5
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150 200
M5 (Mg )

The maximum likelihood waveform parameters are
m, ~170 Mo, m, ~1 GM(D
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Results: Mass prior comparison

N
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We find posterior support at g ~11 (m, ~170M_, m, ~16M )
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Likelihood surface
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g
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Waveform model: IMRPhenomXPHM
Prior: Uniform in total mass and mass
ratio
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The maximum likelihood waveform parameters are
m, ~170 Mo, m, ~1 GM(D
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Sub-dominant harm«f

GW is a sum of spin-weighted spherical harmonics:

h(t) =R {(F_|_ + ’LFx) (Z 2Y£mbEm(t)) }

fm

Dominant harmonic is (I, m) = (2, 2)
o  Only two previous events, GW190814 & GW190412,
had measureable sub-dominant modes

The q < 2 (blue line) and g > 2 (orange line) max L
waveforms have ~ the same SNR from the dominant
mode (14.3 and 14.5), but total SNR is 15.16 and

15.94, respectively.

Nearly all the additional SNR in the q > 2
waveform is from sub-dominant modes.
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Results using NR Surrogate model

6
100 15.5
5_.
o 80 i 15.0
s 4
:-’ o
o 60 3 14.5
£
40 2 3 14.0
e = ,
75 100 125 150 175 125 150 175 200 225
mi' (Mo ) M (M)

Waveform model: NR Surrogate (NRSur7dq4)
Prior: Uniform in total mass and mass ratio
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|

e \We also evaluate posterior assuming the ZTF flair & GW190521 were from
the same source

Constrained EM analysis

e Repeat analysis fixing the sky location and distance to location of the flair
found by ZTF

e Results shown for uniform in total mass and mass ratio prior (compares to
previous two slides)

Pirsa: 20110043 Page 44/54




Constrained EM results
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Constrained EM results

e Highest mass ratio mode is disfavored
o  The redshift constraint is largely inconsistent with the distance required for this mode

e Evidence for spatial coincidence?
o Note: time coincidence is excluded
o Range of assumptions depending on selection effects
m (1) assume unbiased all-sky observation out to furthest redshift we consider
e INB~23
B (2) assume targeted observation of low-latency region
e InB~-4
o Possible corroboration from recurrence of flare in the future
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Implications

Support for higher-mass-ratio modes indicates that neither component is

necessarily within the PISN (50-120 solar mass) range
o Both components could have formed as a direct remnant (still need to explain high spin of
primary)
Primary spin angle is suggestive of a dynamical formation
o Consistent with forming within an AGN
If a common origin with the EM flare can be confirmed the highest mass ratio
Is nearly excluded
o Remaining support comparable between lowest mass ratio and q ~ 5-6 mode.
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Prior Results and Systematics




Differences from LVC analysis

The LVC reported masses of m, =85 M_and m,=66""_ M_
Several differences between their analysis and ours

Waveform models: LVC used IMRPhenomPv3HM, SEOBNR, NRSur7dg4
Different sampling methods:

o LVC used LALInference

o No numerical marginalization over phase and polarization
Different priors:

o LVC: uniform in detector-frame masses and uniform in luminosity volume
LVC applied cuts to detector-frame masses

detector-frame total mass > 200 M _

70 M _ < detector-frame chirp mass < 150 M
mass ratio < 6

m, >30M,
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Comparison to LVC results

Prior: uniform in source-frame masses,
uniform in comoving volume

=)= 154500 T 1987 158 - ghisl 128578 101
2 LVC PhenomPv3HM
I LVC NR Surrogate
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Comparison to LVC results

Prior: uniform in detector-frame masses,
uniform in cubic luminosity distance
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Why are our results different from the LVC results?

e Short answer: the parameter space cuts (especially the chirp mass cut)
excluded the higher mass ratio mode

Why were these cuts chosen?
o More efficient to sample restricted parameter space
o Region seemed suitable likely due to uniform in detector-frame masses and cubic distance
prior, combined with complicated multimodal structure of likelihood surface

Different waveform models, sampling techniques, and priors used make it
difficult to say conclusively, however
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GW190521: A continuing mystery

e Could this be a non-circular merger?

e Are the waveform models suitably understood to minimize systematics?

e More NR simulations and models that include all physical effects (eccentricity,
large mass ratio, high spin) are needed to better understand this event
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