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Abstract: The use of wavelet-based constructions has led to significant progress in the analytic understanding of holographic tensor networks, such
as the multi-scale entanglement renormalization ansatz (MERA). In this talk | will give an overview of the (past and more recently established)
connections between wavelets and MERA, and the discuss the important results that have followed. | will aso discuss work currently underway that
exploits the wavelet-MERA connection in order to produce new families of wavelets that are optimal for certain tasks, such as image compression.
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Introduction

Tensor Network

Compressed
representation of some
correlated data

 ——

™

Quantum many-body systems

Data science: data analysis, data compression,
machine learning

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1
% = ,._]Ll
P— — =y
Convolution Subsampling Convolution Subsampling Convolution

(e.g. holographic tensor networks are related to
convolutional neural networks)
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Introduction

Quantum many-body systems

/|

Data science: data analysis, data compression,

Tensor Network . :
machine learning

Compressed
representation of some
correlated data

Holography: duality between semi-classical
gravity and conformal field theories
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Introduction

' | | | | | | | \a Quantum many-body systems

Data science: data analysis, data compression,

Tensor Network . :
machine learning

Compressed
representation of some
correlated data

Holography: duality between semi-classical
gravity and conformal field theories

Today: previous and ongoing work on wavelets
that ties some of these aspects together

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (2016)
G.E., Steven. R. White, Phys. Rev. A 97, 052314 (2018)
J. C. McCord, G.E., in preparation...
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Introduction: MERA

Coarse-graining transformation:
Entanglement Renormalization (ER)

Constraints:
Isometries: Disentanglers:
..... L TETTITTITETE TEITITETEI TUCTEIEITEEY SITITITEECIY STTTECETETITE L’ Coa_rser g
lattice
F — =
........ O @ @@ @ @@ @i @@ original
lattice
blocks of two sites
g ) ™
. 5 e e X HlU)
» Starting from a lattice Hamiltonian > \‘K
S "'. {l "
H© we can use ER to generate a N ‘/’ \H‘ ) H®
sequence of effective (i.e. coarse- =% .“*‘*Vﬁ'“’o =8
grained) Hamiltonians. ’ ). il stable
/‘>"-’ L " ’,':;f fixed point A
[ .,./‘-//‘__74 \ ‘l.‘\
* Extract long-range (low-energy) o= / "\ |\
. " unstable  \ \
system properties from the - foedpoint | | \
effective Hamiltonians ol | ]\
. fixed point B \ \ \
| |
LY J
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Introduction: MERA

Coarse-graining transformation: Constraints:

Entanglement Renormalization (ER)

coarser Isometries: Disentanglers:

lattice
T _ _

........ 0 @@ @ @ @ @@ @@ [ OFIgINA
lattice

blocks of two sites

Multi-scale Entanglement Renormalization Ansatz (MERA)

% A higher layers encode long-ranged
o properties of the state
z
% MERA = decomposition of a
= state into information at
Eﬂ different length-scales
(]

lower layers encode short-

® 0 0 0 0 0 0 0 @ @ 0 @ @ 0@ Q@ ranged properties
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Introduction: MERA

ER and MERA are powerful numeric tools for investigating lattice
models (especially critical, scale-invariant systems)

Example: numerical calculation of conformal
data from 1D critical Ising model:

H=Y) (-X("X(r+1)+Z(r)

Scaling Dimensions A

24172 fonniinidi g e do p 3 .
5 il , primary :
241/8 | BRI . T Ll e S0 : :
5 e | 2T fields: ! exact : MERA :
e N P = spin: i 0=0.125 i 0.1250003 |
it o . v i ~on I L energy: : &=l ; 1.0000200
1 £ v v disorder: : 1 =0.125 i 0.1250002
I s W2 e fermion: {y =05 { 05000004
178 st - — 8 Len@@oondumenendanmnis
0 ® ........................................ O ................................................
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Introduction: MERA

ER and MERA are powerful numeric tools for investigating lattice
models (especially critical, scale-invariant systems)

Example: numerical calculation of conformal
data from 1D critical Ising model:

H=Y) (-X("X(r+1)+Z(r)

Scaling Dimensions A OPE Coefficients

F R A R B Raited (rexact ('E:IERS‘;\. error
241/8 | ] 7. EORERRcns) I ... - ) — agpp——
el e oy =i ] e Cevo=1/2 0.50008 0.016%
TP T e - Ceppu=—1/2 | -0.49997 0.006%
} - __ e~im/4 |1 00068e—iT/4 V6]
Sk e oo e I L0 L Como = V2 e HEREL
— g — /2 | 1.00068e7/ N VRQO7
€ " ¥ Cope =7 o5 0.068%
I s 12— &8 |C, g =i 1.00017 0.010%
[8 |isitmssamsadionmmi: @fsssianes ) 50 T PR —— e ‘ . g P
1% S & o Cogop =—1 —1.00014 0.010%

Pre-2015 status:
* many numeric examples of MERA accurately encoding lattice CFTs

* no analytic examples, no proofs or bounds
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Introduction: MERA

There has been significant interest in exploring the
relationship between tensor networks and holography.

Motivation for this proposal (in part): that MERA seems
to provide a good representation of CFTs.
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Introduction: MERA

There has been significant interest in exploring the
relationship between tensor networks and holography.

Motivation for this proposal (in part): that MERA seems
to provide a good representation of CFTs.

e 2
Questions that | would often be asked:
Q: Is there a simple (analytic) example of a A: No, but we have numerically optimized
MERA than encodes a CFT? examples (i.e. containing 1000’s of optimized

parameters).

Q: Can one prove that MERA can accurately A: No, but we have numerical evidence that
encode the properties of a CFT? suggests this to be true.

- 2
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Introduction: MERA

Compare with other networks: Matrix Product States (MPS)

* There exists many useful examples of ground-state MPS
for lattice Hamiltonians, e.g. AKLT models.

R a e

e 2
Questions that | would often be asked:
Q: Is there a simple (analytic) example of a A: No, but we have numerically optimized
MERA than encodes a CFT? examples (i.e. containing 1000’s of optimized

parameters).

Q: Can one prove that MERA can accurately A: No, but we have numerical evidence that
encode the properties of a CFT? suggests this to be true.

- >
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Introduction: MERA

Compare with other networks: Matrix Product States (MPS)

* There exists many useful examples of ground-state MPS
for lattice Hamiltonians, e.g. AKLT models.

R a e

Proposal by Steve White (circa 2014): MERA tensor networks could be related to Wavelets

* can wavelets be used to construct (analytic) examples of tensor networks?
* can we use wavelets to prove that MERA can accurately encode certain CFTs?

e 2
Questions that | would often be asked:
Q: Is there a simple (analytic) example of a A: No, but we have numerically optimized
MERA than encodes a CFT? examples (i.e. containing 1000’s of optimized

parameters).

Q: Can one prove that MERA can accurately A: No, but we have numerical evidence that
encode the properties of a CFT? suggests this to be true.

- >
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Introduction: MERA G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (2016)

G.E., Steven. R. White, Phys. Rev. A 97, 052314 (2018)

Proposal by Steve White (circa 2014): MERA tensor networks could be related to Wavelets

* can wavelets be used to construct (analytic) examples of tensor networks?
* can we use wavelets to prove that MERA can accurately encode certain CFTs?

Wavelets are very useful in the theoretical understanding of MERA and CFTs!

Today:
* recap of wavelet/MERA connection and what we can learn from it
* discuss some ongoing work in using tensor networks to build improved wavelets

' N
Other avenues of progress )
. . i Exact holographic networks for
in building critical MERA ) )
. . the Motzkin chain
without numerics: 1 L
R. Alexander, G.E., |. Klich, arXiv:1806.09626
(2018).
\ J
' A
. ) _
' Continuous MERA
‘_ J. Haegeman, T. J. Osborne, H. Verschelde and F.
/ .\."\ Verstraete, Phys. Rewv. Lett. 110, 100402 (2013)
ey ) J
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Overview

* What are wavelets? What are they useful for?

* How to wavelets related to tensor networks (in particular to
unitary circuits and MERA)

* What can we learn about MERA from wavelets?

¢ What can we learn wavelets from MERA?
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Introduction to Wavelets

v Fourier expansions are ubiquitous in math,

science and engineering

* many problems are simplified by expanding in
\/\/\/ Fourier modes

* smooth functions can be approximated by only a
few non-zero Fourier coefficients

frequency
wavelet (CDF 9/7) st ]
L : Wavelets are a good compromise between real-
ﬂ 1 space and Fourier-space representations
08 H * compact in real-space and in frequency-space

06 * developed by math and signal processing

g _’-\ 0.4 communities in late 80’s

V 0.2 * applications in signal and image processing, data
. compression

narrow band in
frequency space
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Daubechies Wavelets

188 806868000808 860000000080888000080860

N-dim vector space

Example:
Daubechies D4 wavelets

* complete, orthonormal basis

* have 2 vanishing moments
(orthogonal to constant + linear
functions)

* useful for resolving information
at different scales
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Introduction to Wavelets

Fourier expansions are ubiquitous in math,
science and engineering

* many problems are simplified by expanding in
Fourier modes

* smooth functions can be approximated by only a
few non-zero Fourier coefficients

dilations

Wavelets are a good compromise between real-
space and Fourier-space representations

* compact in real-space and in frequency-space

: * developed by math and signal processing
ﬂ communities in late 80’s

* applications in signal and image processing, data
compression

/4%)
1)
pmeer
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Daubechies Wavelets

Example:
scale z = 4 wavelet, g,

with N/16 translations
( ) / ) Daubechies D4 wavelets

T * complete, orthonormal basis
* have 2 vanishing moments
scgle z=3 wavele.t, 9s (orthogonal to constant + linear
(with N/8 translations) functions)

T * useful for resolving information
at different scales

scale z = 2 wavelet, g,
(with N/4 translations)

T

scale z = 1 wavelet, g,
(with N/2 translations)

PHIENE I ARaRaToZoz oror o

88 8008080080 00008080000800800080800680688 N-d i m ve CtO r Space
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Daubechies Wavelets

Example:
scale z = 4 wavelet, g,

with N/16 translations
( ) / ) Daubechies D4 wavelets

T * complete, orthonormal basis
* have 2 vanishing moments
scgle z=3 wavele.t, 9s (orthogonal to constant + linear
(with N/8 translations) functions)

T * useful for resolving information
at different scales

scale z = 2 wavelet, g,
(with N/4 translations)

T

scale z = 1 wavelet, g,
(with N/2 translations) 1

(
large scale wavelets encode
long-ranged information

o

small scale wavelets encode
short-ranged information

88 8008080080 00008080000800800080800680688 N-d i m ve CtO r Space
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Daubechies Wavelets

How can we construct wavelets?

* first construct scaling function (allows
recursive construction of functions at

X different scales)
x \&“\

,XX/ X\‘\_ D4 scaling sequence
T o ] [-0.1294]

h, 0.2241

h = =

l’l3 0.8365

_h4_ I 0.4830 |

scaling function at larger scale defined from
a linear combination of scaling functions at
previous scale

“Refinement equation”

188 80 6868088808060800008000008006808080688 N -d i m Vecto r Spa ce
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Daubechies Wavelets

How can we construct wavelets?

» first construct scaling function (allows
recursive construction of functions at
different scales)

D4 scaling sequence

B ] [-0.1294]
e h, _ 0.2241
h, 0.8365
_h4_ | 0.4830 |
* wavelets then defined from scaling

functions using wavelet sequence

D4 wavelet sequence

[—h,| [-0.4830]
h, 0.8365
&7 on, || -0.2241
| | -0.1294

188 80 6868088808060800008000008006808080688 N -d i m Vecto r Spa ce

Pirsa: 20110035 Page 22/67



Daubechies Wavelets

. . How can we construct wavelets?
Scaling functions:

tra'nsform data between » first construct scaling function (allows
different length scales Wavelets: encode the recursive construction of functions at
. local information at different scales)
e

each given scale.

D4 scaling sequence

-W@HHHQX-X'XXK
>\

h ] [-0.1294]
|y | | 02241
"l h || 08365
B, | | 04830 |

* wavelets then defined from scaling
functions using wavelet sequence

D4 wavelet sequence

[—h,| [-0.4830]
h, 0.8365
&7 on, |7 | 02241
| | -0.1294

188 80 6868088808060800008000008006808080688 N -d i m Vecto r Spa ce

Pirsa: 20110035 Page 23/67



Pirsa: 20110035

Introduction to Wavelets

- A discrete wavelet transform (DWT) is a type of
multi-resolution analysis (MRA)

- Each step acts as a high-pass / low-pass filter: the

signal is separated into (N/2) low-frequency

M”VV‘M"V"“'WM’V* components (from scaling functions) and (N/2)

high-frequency components (from wavelets)

I I
(e
Iow-freq\ / high-freq v

/T (scaling)  2"step  (wavelets)

- Very similar to a coarse-graining transformation!

A

/| low-freq

A~ (scaling) 1% step

original signal on N-lattice points
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Introduction to Wavelets e : .

Z= 31
Z = -
* the discrete wavelet transform =
decomposes the image into the
information at different scales "z’
z=1+
* bright pixels in transformed image

represent large high-freq components -

(i.e. sharp changes in the image) 4 2D discrete wavelet transform

* transformed image still contains all of
the information of the original image
(we have just made a change of basis!)

Original Image (“bubbles” the guinea pig)
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Introduction to Wavelets

* the discrete wavelet transform
decomposes the image into the
information at different scales ‘z°

* bright pixels in transformed image
represent large high-freq components
(i.e. sharp changes in the image)

* transformed image still contains all of
the information of the original image
(we have just made a change of basis!)

Original Image (“bubbles” the guinea pig)
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Introduction to Wavelets

MERA quantum
circuit

4 2D discrete wavelet transform

The discrete wavelet transform displays
many similarities to coarse-graining and the
MERA. Are these similarities superficial or
something deeper?

Original Image (“bubbles” the guinea pig)
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Overview

* What are wavelets? What are they useful for?

* How to wavelets related to tensor networks (in particular to
unitary circuits and MERA)

* What can we learn about MERA from wavelets?

¢ What can we learn wavelets from MERA?
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Circuit representation of wavelets

Wavelet transform described by

recursion relation:
wavelet
scaling
f . /™%
unction .
%

AP x % R

X X X X

9000860600808 000808008000800000808086008 N _d i m Vecto I Spa ce
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Circuit representation of wavelets

Wavelet transform described by
recursion relation: Recursion relation can be encoded
wavelet

as a (classical) unitary circuit:
scaling
: [ A
function | ™

s X
/ /5;

9000868600808 000800008000800000808086008 N_dim Vector Spa ce

X X x X
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Circuit representation of wavelets

Diagrammatic notation: 2X2 unitary rotation matrix
u(gz)% () cos((?) sin(@)
u(gl)% —sin(é’) cos(é’)
L]
ul
ul
ul

Classical circuit here represents direct sum
of matrices (not tensor product!)
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Circuit representation of wavelets

Diagrammatic notation:

2X2 unitary rotation matrix

u(@z)e . cos((?) sin(@)
u(gl)ﬁ :ﬁ:ﬁ:h:ﬁ: ) —sin(é’) cos(é’)

S—
M2 -

B

=q

4,

q;
q,
4s
9s
q;

Wavelet transform maps
from vector of N scalars
to vector of N scalars!

qs |
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Circuit representation of wavelets

g N
D

o) e
u(gz)e ) ﬂl )
(6)—
(&)

g
[0,1,8,4] [0,0,1,0]
wavelet sequence scaling sequence
associated to inverse associated to inverse
transforming unit vector transforming unit vector
(odd sub-lattice) [ ] l—I‘ [I—J (even sub-lattice)
4 4
(1582, 85.84] [, by, by by ]
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Circuit representation of wavelets

6 =rn/12 1 1
Set rotation U, =7
: angles: g, =) ~ h H h
, ) )
1
\_'_l
g

N 3
(£, 8,85, 84] LA, h,, h, h,]
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Circuit representation of wavelets

H HH

Higher-order Daubechies wavelets (or other
wavelet types, such as symlets or coiflets)
can also be represented as MERA-like

Daubechies D4 wavelets can be represented
as unitary circuits with exactly the same
structure as MERA (but direct-sum rather

than tensor-product). circuits.
| D4 IIZ)aublechiés . i D6 Daubechies
I\ /
.}'} \\ /
==, ol e =t B
L A
\/ S

orthogonal to constant + linear orthogonal to constant + linear +
quadratic functions

functions
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Overview

* What are wavelets? What are they useful for?

* How to wavelets related to tensor networks (in particular to
unitary circuits and MERA)

* What can we learn about MERA from wavelets?

¢ What can we learn wavelets from MERA?
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Free spinless fermions

consider 1D free spin-less fermions:

diagonalize via Fourier transform:

Bip= | AT

1 AT ~ AT A
Hy = EZ (a,THa,_ = h.c.) = ,uz a.a —
' — T dispersion relation:
hopping chemical 2k
: /A
term potential Ak = 11— COS v _
\

Fourier modes:

~

—i2xkr/ N
Cr

1 %
= WZCL@

Ground state is given by filling in

negative energy states (fermi-sea):

b n 1 A <O
<WGS CrCy V/GS>: = =
0 A, >0 2 2
momentum, k
\ 8

1
1
1
1
-r 0 &7 @

#

Can we represent the free-fermion ground state as a MERA?




Ga u SSia N M E RA “Entanglement renormalization in noninteracting fermionic systems”
G. E. and G. Vidal, Phys. Rev. B 81, 235102 (2010)

MERA modes: Z; We can restrict to unitary gates that preserve
- fermionic mode structure (i.e. that implement
? ! Bogoliubov transformations):

Gaussian MERA defines mapping
between fermionic modes:

0, . N-1
bz = Z Uzrar
) A r=0 S
N-MERA N-spatial
modes modes

spatial modes: @,

Pirsa: 20110035 Page 38/67



Pirsa: 20110035

Gaussian MERA

~

MERA modes: b,
1 !
| |

® ® 0 0 0 0 0 0 00 00 00
spatial modes: @,

“Entanglement renormalization in noninteracting fermionic systems”
G. E. and G. Vidal, Phys. Rev. B 81, 235102 (2010)

We can restrict to unitary gates that preserve
fermionic mode structure (i.e. that implement
Bogoliubov transformations):

Gaussian MERA defines mapping
between fermionic modes:

n N-1
bz = Z Uzr&r
/’ r=0

S
N-MERA N-spatial
modes modes

Each two-qubit gate maps a pair of fermion
modes into two hew modes:

b | [cos@) -sin(@)]é
]52 | sin(@)  cos(d) || 4,

Gaussian MERA is built in the same direct-sum
structure as the wavelet unitary circuits!
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Gaussian MERA from wavelets

Any discrete wavelet transform can be interpreted as a Gaussian MERA

Can we use a standard wavelet transform to build an approximation to the free-
fermion ground state?

Not so easy! Each step of a standard wavelet transforms acts as a filter between
high / low frequency components. Here we need a 3-band filter with high / mid /

low frequency components.

mid freq:
low freq: modes near fermi-surface high freq:
modes are set to propagate to next scale modes are set to be

be occupied |1) \ l unoccupied |0)
r . N \/‘(

We can make a 3-band filter by
coupling together two copies of
a Daubechies D4 wavelet.

T
2

2 momentum, k
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)]
et
Q@
Q
>
m©
S
=
o
| .
Y
LLl
=
c
Im
1))
)]
=
©
O

4
K

O | [ =0 | [ 6 ][ 8] [ O

6 || -6 ||

2N

| -6,

L8] [ 6

3
i
iy
|
0 G
=
P
o
T
X
=
e

Y

L(r)

occupied modes |1)

L1 (R)]?

L(r)
A

m

n/2
e K
]

momentum

0

position, r

L

T
well localized in the low-

frequency range
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Gaussian MERA from wavelets

11) 10}
)

4
Lot 7O O SSSC T S 2 ) S Uy

AN J
Y
_ hy (1) _
occupied modes |1) unoccupied modes |0)
Li(r) /\ |L1(k)|2§ hy(7) |H1(k)|2§
position, r 0 /2 s position,r 0 n/2 T
‘ momentum, k | \ momentum, kj
I Y
well localized in the low- well localized in the high-
frequency range frequency range
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Gaussian MERA from wavelets

*

% S
Y
_ hy (1) _
occupied modes |1) unoccupied modes |0)
Li(r) /\ |L1(k)|2§ hy(7) |H1(k)|2§
position, r 0 /2 s position,r 0 n/2 T
‘ momentum, k | \ momentum, kj
I Y
well localized in the low- well localized in the high-
frequency range frequency range

Conclusion: the (doubled) wavelet circuit is preparing an
accurate approximation to the free-fermion ground state!
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MERA from wavelets

One final trick: the system of free spinless fermions can be transformed into
(two copies of) the critical Ising model via some standard mappings.

. . Two copies of free Quantum critical
Free spinless fermions majorana fermions Ising model

HFS = %Z(a;'ﬂér + h-c-) = HFM = Zi(alrahﬂ _(’?lr—lalw&) = HIsing - Z(_XrXrH +Zr)

: 4 r

Ground state of free Ground state of the
spinless fermions critical Ising model
I1) 10) )
’ ; * 0 0
i l: |0} |0)
] | 0, \\| o . w
o | s —r— SR E I

u u
1)y |0} 11y |0) ) >
' 1) |0
' vr [ Yy o | o ||
Ewal || EZ@ |
_61” 91”_91” 61”_‘91” 0y Wl |W| |W| |W

L N
‘fj‘

6 | =0 6 | [ =6 8 || =6

T T \ T
: P2 :
\ i \
1 \ i \ i
1 ' I . i

ujju||u
I

i, r, . ESrS. e S
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

isometries: w, ., =(E2)11, +(£E) 7,7, +i(BE) X, 7, +i( =2 )y X

rrr+l r+1 ror+l reor+l

r+l ror+l r+l

Disentanglers: u__, (“’)I]I,HJr(

 Z
define a binary MERA

of bond dim y = 2

2)2,Z,,+(5) XY, +(3) %X

*  Amazingly simple result! These simple unitary
gates somehow manage to approximately encode

J‘ J ;“ ’ the Ising CFT.
w w w w We can similarly get closed form expressions for
| | I | |

larger bond dimension MERA (e.g. y = 8) from
higher order wavelets.

* Useful example understanding how MERA can
encode a CFT (without needing numerics)

* Useful for debugging numeric algorithms...
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

lsometries: w, ., = ( Sl )171,4+1 + (ﬁ;ﬁ )Z,AZ,,H i )X, 7., +i( 52 ) YX.,

Disentanglers: u, ., ("[i”)lj,ﬂJr(ﬁf)Z,ZHlJr(QL)X,Yr+1 HHrX,,

Exact MERA MERA
x=2 x =8
Energy| -1.27323... -1.24212 -1.26774
central (2.4% err.) (0.4% err.)
charge: {_ ¢ 0.5 0.4957 0.5041
A 0 0 0
A 0.125 0.1402 0.1233
Wavelet-based MERA produce primary A, 1 1 1
a good approximation to the fields: — A, 0.125 0.1445 0.1291
Ising CFT. A 0.5 0.5 0.5
A, 0.5 0.5 0.5
— A;v.! - 2 2
g 0.5 0.4584 0.4957
. G Givi -0.5 -0.4201 -0.5060
fusion i i il P it H
BREHSE ( """ ‘ X7 1.1‘1_‘\";'? m /4 i} «»:\'-.?" '
V.o 72 o] i
" g i 1.234i 1.0243i
g ¢4 " -1 -1.234: -1.0243:2
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

rrr+l r+1

Disentanglers: u,,,, ( “’)[]I,HJr( )Z Z (DX Y, +HiH)rX,,

lsometries: w, ., =(EE)11 +(E2) 2,7, +i(BE) XY, +i(=E)r X,

What do we learn about MERA from wavelets?

(1) MERA of small bond dimension can accurately encode conformal data.

* Previously: numerical optimization via energy minimization
always required large bond dimension in order to produce
accurate conformal data.

* Can now be understood as a limitation of the optimization
(which targets the short-ranged properties), rather than a
failing of the ansatz itself.

* This suggests that there could be better optimization strategies
for producing accurate conformal data from critical systems.
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

isometries: w, ., =(E2)11, +(£E) 7,7, +i(BE) X, 7, +i( =2 )y X

rrr+l r+1 ror+l reor+l

ror+l r+l ror+l r+l

Disentanglers: u, ., ( “’)II +( )ZZ +(HX Y, HL)rX

What do we learn about MERA from wavelets?
(1) MERA of small bond dimension can accurately encode conformal data.

(2) MERA can produce RG flows to gapless fixed points.

RGflow: H® - g 5 g@ ... 5 gl

o ’ /
{ gapless
v (critical) fixed

gapped point
fixed point

gapped
fixed point
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

isometries: w, ., =(EE)11 +(E2) 2,7, +i(BE) XY, +i(=E)r X,

rrr+l r+1 ror+l r

r+l ror+l

Disentanglers: u, ., ( “’)[]I,HJr( )ZZ +(HX Y, HEHrx,

What do we learn about MERA from wavelets?
(1) MERA of small bond dimension can accurately encode conformal data.

(2) MERA can produce RG flows to gapless fixed points.

RGflow: H® — g 5 g@ ... 5 ge)

H'vun
: ® Q :
Previous understanding: MERA can approximate e . H'“ H' 2) [}. o)
a gapless RG flow... but will always eventually N . Y o
. . - »
flow to a gapped fixed point! ® e, o ‘
] ‘o d
\ - gappe
* finite bond dim MERA always has some finite e 5 AN fixed point
truncation error. L . e
* finite truncation error will always introduce a ./O ga';;less
gap (or relevant RG perturbation). “ {eritical)fed
gapped point
fixed point
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

isometries: w, ., =(EE)11 +(E2) 2,7, +i(BE) XY, +i(=E)r X,

e+l T ror+l

Disentanglers: u, ., ("[i”)lj,ﬂJr(#)Z,ZMJr(gé)X,Yr+1 HHrX,,

What do we learn about MERA from wavelets?
(1) MERA of small bond dimension can accurately encode conformal data.

(2) MERA can produce RG flows to gapless fixed points.

RGflow: H® — g 5 g@ 5 ... 5 g

H'vun
: ® Q . g
Previous understanding: MERA can approximate N H;'/ % ]’;"
a gapless RG flow... but will always eventually N Ne - Sl
flow to a gapped fixed point! ® .O.- - il
* finite bond dim MERA always has some finite > ""
truncation error. [ . —
* finite truncation error will always introduce a ./O ga';;less
gap (or relevant RG perturbation). “ fekisical)ifixed
gapped point
fixed point

wavelet constructions show
that this statement is false!

gapped
fixed point
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

rrr+l r+1 ror+l reor+l

isometries: w, ., =(E2)11, +(£E) 7,7, +i(BE) X, 7, +i( =2 )y X

22,2, +(5) XY, +3)1X,.,

r+l ror+l

Disentanglers: u__, (“’)I]I,HJr(

What do we learn about MERA from wavelets?
(1) MERA of small bond dimension can accurately encode conformal data.
(2) MERA can produce RG flows to gapless fixed points.

(3) MERA are provably accurate representations for (certain) lattice CFTs.

“Rigorous Free-Fermion Entanglement Renormalization
from Wavelet Theory”, J. Haegeman, B. Swingle, M. Walter,
J. Cotlet, G.E., V. Scholz, Phys. Rev. X 8, 011003 (2018).

* Provides a more general constructions of MERA using
Selesnick wavelets.

* Formulates rigorous error bounds for the accuracy of
MERA correlation functions.

* Also demonstrates that branching MERA can encode
a system of 2D fermions (with 1D fermi-surface).
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MERA from wavelets

Daubechies D4 construction for the ground state of the critical Ising model:

isometries: w,,, =(E2)11, +(£58E) 7,7, +i(BE) X, 7., +i( =2 )y X

o+l T 4 r+l 4 4 rr+l 4 rehr+l
Disentanglers: u, ., = (ﬁf )I]Ir+1 + (ﬁf )Z,Zr+1 +(HX Y, HEHrx,

What do we learn about MERA from wavelets?
(1) MERA of small bond dimension can accurately encode conformal data.
(2) MERA can produce RG flows to gapless fixed points.

(3) MERA are provably accurate representations for (certain) lattice CFTs.

“Rigorous Free-Fermion Entanglement Renormalization
from Wavelet Theory”, J. Haegeman, B. Swingle, M. Walter,
J. Cotlet, G.E., V. Scholz, Phys. Rev. X 8, 011003 (2018).

“Quantum circuit approximations and entanglement renormalization E
for the Dirac field in 1+1 dimensions”, F. Witteveen, V Scholz, B.
Swingle, M. Walter, arXiv:1905.08821 (2019). A lot of other exciting work going on
“Bosonic entanglement renormalization circuits from wavelet USing wavelet-based constructions of
theory”, F. Witteveen, M. Walter, arXiv:2004.11952 (2020). renormalization flows and MERA (e g
“Scaling limits of lattice quantum fields by wavelets”, V. Morinelli, G. for quantum fields, for bOSOﬂS...)
Morsella, A. Stottmeister, Y. Tanimoto, arXiv:2010.11121 (2020).
+ many more
. J
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Overview

* What are wavelets? What are they useful for?

* How to wavelets related to tensor networks (in particular to
unitary circuits and MERA)

* What can we learn about MERA from wavelets?

¢ What can we learn wavelets from MERA?

Can tensor networks improve
1 ‘ upon wavelet-base methods in the
setting of signal/image analysis?
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Wavelet Applications

Wavelets are useful for signal/image/video compression:

image =2 truncate (keep .—> recovered image
transform t? only largest 2% inverse i -
wavelet basis of coefficients) transform peak signal to noise:

PSNR: 37.0 dB

* Most coefficients of the transformed image are close to zero
(as wavelets are orthogonal to smooth functions)

* Threshold the transformed image as to store only the largest
wavelet coefficients (and discard the rest).

* This is the key part of JPEG2000 format, and many other
standards for image, audio and video compression
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Wavelets for Image Compression

Scale-3
symmetric
Many times of wavelet are known. What makes a
good wavelet for image compression? ‘ll ’\
|
N Vi
Daubechies Coiflets CDF wavelets WJ 1V |§"
u J |
y l\
/ \ |
N
r( \\ 2 J\ o R P - ‘ﬂ /‘JW /\,.\/
/ | ;’/ iy \“ "" \ v
\\_\f“ \‘( l‘f '\1 K' : “I
desirable |
properties
orthogonality? yes yes - yes
symmetric? no yes yes
compr_essmn good good bad
ratio?
JPEG + other
algorithms

Pirsa: 20110035
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Wavelet Design using Tensor Networks

Can we use tensor networks to build (i) Binary MERA
new classes of wavelets with desirable
properties?

Formulating wavelets in terms of
tensors networks greatly simplifies
their construction!

* many different types of MERA are
known, each can be associated to (i) Ternary MERA:

a family of wavelet

* we know how to incorporate spatial -
and global internal symmetries into
tensor networks >H

(iii) Modified Binary MERA:
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Wavelet Design using Tensor Networks

Can we use tensor networks to build (i) Binary MERA
new classes of wavelets with desirable
properties?

Formulating wavelets in terms of
tensors networks greatly simplifies
their construction!

* many different types of MERA are

known, each can be associated to (i) Ternary MERA:
a family of wavelet
* we know how to incorporate spatial -
and global internal symmetries into
tensor networks >H
Many new wavelet families: (iii) Modified Binary MERA:

“Representation and design of wavelets using unitary circuits”
G.E., Steven. R. White, Phys. Rev. A 97, 052314 (2018)

Example: design of wavelets with
orthogonality and reflection symmetry
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Wavelet Design using Tensor Networks

Q: How to we incorporate a symmetry on a tensor network?

A: We impose the symmetry on each individual tensor within the network

Orthogonality of wavelets = every tensor should be unitary

Reflection symmetry wavelets = every tensor should be reflection symmetric

2X2 matrices:

onlyasingle [0 1 corresponds to
unique matrix: L1 0 a swap gate: : :

3x3 matrices: _ cos(8) + 1 \/Esin(ﬁ) cos(6) — 1
1-parameter family 1

T 3 —V2sin(@) 2cos(d) —V2sin(b)
cos(8) — 1 \/fsin((?) cos(f) +1

Can we build a circuit using only these two types of gate?
Yes! This is a generalization of the ternary MERA.
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Wavelet Design using Tensor Networks

Ternary MERA:

* result is a ternary unitary circuit
(3-to-1 scaling) with some free
variational parameters {64, 9,, ... }.

* however, the resulting wavelets

are exactly orthogonal and (anti-) lgeneralization
symmetric for any choice of
parameters. Ternary unitary circuit:
N A N
* we choose parameters as to
maximise the vanishing 0
2 =N
moments of the wavelets. (but
other choices are possible!) 0, " ! ) ) )
0, —»
6, —
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Wavelet Design using Tensor Networks

Ternary unitary circuit:

N

- ) - .
symmetric antisymmetric
wavelet wavelet
New orthogonal, symmetric
wavelets: smooth with good Very
compactness. handsome!
i |
Previous orthogonal, ‘\ ’ f\ .
symmetric wavelets: | . 11\
- 4 : | ) | V] / e Butt ugly!
jagged and wide support. \v\ V4 \ | \‘}
) w
| b'
\_
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Wavelet Design using Tensor Networks

How well do these new wavelets work in practice?

We have been doing some large scale testing and

experimentation of new wavelet designs for image
compression.

James McCord
“Improved wavelet designs for image compression”

J. C. McCord, G.E., in preparation

= E . . N
symmetric antisymmetric
wavelet wavelet
New orthogonal, symmetric
wavelets: smooth with good Very
compactness. handsome!
: | "
Previous orthogonal, . (-
symmetric wavelets: b g : A\,
. 4 ; | : Sl | e Butt ugly!
jagged and wide support. N ‘- \/
\ Vol \ |
| p
\_ J
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Wavelet Design using Tensor Networks

sample code at:
www.tensors.net/research

CDF 9/7 wavelets:

image E—— truncate (keep — compressed image
transform to only largest 2% inverse
wavelet basis of coefficients) transform

New scale-3 wavelets:

Pirsa: 20110035 Page 63/67



Wavelet Design using Tensor Networks

sample code at:
www.tensors.net/research

CDF 9/7 wavelets:

image E—— truncate (keep — compressed image
transform to only largest 2% inverse
wavelet basis of coefficients) transform

New scale-3 wavelets:
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Wavelet Design using Tensor Networks

* We compare the new wavelets against the CDF 9/7 wavelets, which
are regarded as the best known wavelets for practical applications.

*  We compare compressed images based on multi-scale structural
similarity (SSIM), which is a good measure of perceived image quality.

* Calculate the minimum number of coefficients that to be retained (in
the transformed image) in order to achieve fixed quality: SSIM > 0.9.

Test database: 1285 images, % Coeffs SSIM = 0.9 Ratio
mainly colour photographs. Image set cdf new cdf/new
aerials 14.1471 13.2413 1.068407181
australia 4.3669 4.0321 1.083033655
barcelona 5.7386 5.3671 1.069218013
campusinfall 6.2923 5.862 1.073404981
cannonbeach 9.5341 8.8726 1.074555373
cherries 6.0954 5.7992 1.05107601
columbia 6.0941 5.5082 1.106368687
: |

new wavelets give 7%
improved compression
on average
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Wavelet Design using Tensor Networks

* We compare the new wavelets against the CDF 9/7 wavelets, which
are regarded as the best known wavelets for practical applications.

*  We compare compressed images based on multi-scale structural
similarity (SSIM), which is a good measure of perceived image quality.

* Calculate the minimum number of coefficients that to be retained (in
the transformed image) in order to achieve fixed quality: SSIM > 0.9.

Test database: 1285 images, % Coeffs SSIM = 0.9 Ratio
mainly colour photographs. Image set cdf new cdf/new
aerials 14.1471 13.2413 1.068407181
australia 4.3669 4.0321 1.083033655
barcelona 5.7386 5.3671 1.069218013
campusinfall 6.2923 5.862 1.073404981
cannonbeach 9.5341 8.8726 1.074555373
cherries 6.0954 5.7992 1.05107601
columbia 6.0941 5.5082 1.106368687
: !
* 7% is not a huge improvement, but it is significant! ' new wavelets give 7%
* Some specialised datasets (e.g. a database of fingerprints) improved compression
gave up to 25% improvement. on average
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Wavelet Design using Tensor Networks

Ternary unitary circuit: A A A

free
parameters:

In progress: finely tuned wavelets

Can we tune the free angles {6, 0,, ... } as to construct optimally efficient
wavelets for certain data-types? (e.g. fingerprints, medical images)

This is the real power of the tensor network formalism!
More generally: tensor networks have many connections between existing

ideas in data science. There are myriad potential applications of tensor
networks outside of physics!

Thanks!
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