Title: Path-integral Optimization and AdS/CFT

Speakers: Tadashi Takayanagi

Collection: Tensor Networks: from Simulations to Holography III

Date: November 20, 2020 - 8:00 AM

URL: http://pirsa.org/20110033

Abstract: In this talk we will start with a review of path-integral optimization, which provides a useful description of non-unitary tensor networks for Euclidean path-integrals in CFTs. We will explain an emergence of AdS geometry in this method and an interpretation as a computational complexity. Next we will give its application to analytical calculations of entanglement of purification, which was quite recently reproduced by numerical calculations. Finally, we would like to present a derivation of a path-integral optimization method directly from the AdS/CFT.

Pirsa: 20110033

TENSOR NETWORKS: FROM SIMULATIONS TO HOLOGRAPHY III @Perimeter, Nov.16-20, 2020

Path-integral Optimization and AdS/CFT

(A continuous approach to "AdS =Tensor Network")

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP), Kyoto Univ.

Collaborators: Arpan Bhattacharyya (IIT Gandhinagar)

Jan Boruch (Warsaw U.)

Pawel Caputa (Warsaw U.)

Sumit Das (Kentucky)

Nilay Kundu (IIT Kanpur)

Masamichi Miyaji (UC Berkeley)

Kento Watanabe (Tokyo→UC Davis)

Koji Umemoto (YITP)

Pirsa: 20110033

Contents

- 1 Introduction: AdS/CFT and Tensor Network
- 2 Path-Integral Optimization in CFTs
- * Caputa-Kundu-Miyaji-Watanabe-TT [Phys.Rev.Lett. 119 (2017) 071602]
- * Caputa-Kundu-Miyaji-Watanabe-TT [JHEP 11 (2017) 097]
- * Bhattacharyya-Caputa-Das-Kundu-Miyaji-Watanabe-TT [JHEP 07 (2018) 086]
- 3 An Application: Entanglement of Purification
- * Caputa-Miyaji-Umemoto-TT [Phys.Rev.Lett. 122 (2019) 11, 111601]
- * Camargo-Hackl-Heller-Jahn-TT, arXiv: 2009.11881
- 4 PI-Opt. from Hartle-Hawking Wave function in AdS
- * Boruch-Caputa-TT arXiv:2011.08188
- **⑤** Conclusions

Pirsa: 20110033 Page 3/42

1 Introduction

AdS/CFT [Anti de-Sitter space/Conformal Field Theory] [Maldacena 1997]

Gravity on D+1 dim. AdS = D dim. CFT on bdy

Metric of AdSd+1

$$ds^{2} = R^{2} \cdot \frac{dz^{2} - dt^{2} + \sum_{i=1}^{d-1} dx_{i}^{2}}{z^{2}}$$

 \rightarrow Z = a length scale of RG flow

⇒ "Geometrization" of Renormalization Group Flow [AdS = Real Space Renormalization]

Pirsa: 20110033 Page 4/42

An essence of this emergence of geometry from QFTs is

Quantum entanglement

⇒ ``Geometry'' of Quantum States in many-body system

In AdS/CFT, the entanglement entropy is computed as the area of minimal surface [Ryu-TT 06, Hybeny-Rangamani-TT 07]

Pirsa: 20110033 Page 5/42

Spacetime in gravity = Collections of bits of entanglement = Real space renormalization?

Tensor Networks!

 $[T]^{\dagger}_{abc}[T]_{bcd} = \mathcal{S}_{ad}$

$$\frac{a}{c}$$
 $\frac{d}{d}$ $\frac{a}{d}$ $\frac{d}{d}$

Disentangler = Unitary trf.

$$S_A \leq Min[#links]$$

 $\propto log L$
 $\Rightarrow agrees with$
results in 2d CFT!

Pirsa: 20110033 Page 6/42 This suggests a connection:

[Swingle 2009]

- The MERA has a causal structure but the time slice does not?
- Why is the EE bound saturated?
- How can we find the sub-AdS locality? (i.e. approximation by GR?)

Though there are improvements of models/interpretations:

[Perfect TN: Pastawski-Yoshida-Harlow-Preskill 15] [Kinematical Space: Czech-Lamprou-McCandlish-Sully 15]

[Random TN: Hayden-Nezami-Qi-Thomas-Walter-Yang 16]

[Matchgate TN: Jahn-Gluza-Pastawski-Eisert 17] [Hyper inv. TN: Evenbly 17] [P-adicTN: Bhattacharrya-Hung-Lei-Li 17] [TN geometry: Misted-Vidal 18],.....

, the true connection between TN and AdS is not still clear.

Pirsa: 20110033 Page 7/42

Our Key Observations towards AdS/TN

- [1] A disadvantage of the original TN approach is the presence of discretized structure. The genuine AdS/CFT is continuous.
- [2] To describe a time slice of AdS, it looks better to regard it as a *Euclidean evolution* rather than Lorentzian one.

A Time slice of AdS

= Continuous TN from Euclidean CFT path-integrals?

Motivated by this, we give an alternative approach **based** on path-integrals, related to a continuum limit of TNs.

⇒ Path-integral Optimization!

Pirsa: 20110033

We will describe the discretized lattice structure by the metric in a continuous way and remove unnecessary tensors to make the TN efficient.

Our guiding principle

Eliminating unnecessary tensors in TN for a given state

= Creating the most efficient TN (= **Optimization of TN**)

Solving the dynamics of Gravity (i.e. Einstein eq.)

Pirsa: 20110033 Page 9/42

2 Path-Integral Optimization and CFT(2-1) Formulation

A Basic Rule: Simplify a path-integral s.t. it produces the correct UV wave functional.

Consider 2D CFTs for simplicity. (z=- Euclidean time, x=space)

Deformation of discretizations in path-integral = Curved metric such that one cell (bit) = unit length.

$$ds^{2} = e^{2\phi(x,z)}(dx^{2} + dz^{2}).$$

Note: The original flat metric is given by (ϵ is UV cutoff):

$$ds^2 = \varepsilon^{-2} \cdot (dx^2 + dz^2).$$

Pirsa: 20110033 Page 10/42

2 Path-Integral Optimization and CFT(2-1) Formulation

<u>A Basic Rule</u>: Simplify a path-integral s.t. it produces the correct UV wave functional.

Consider 2D CFTs for simplicity. (z=- Euclidean time, x=space)

Deformation of discretizations in path-integral = Curved metric such that one cell (bit) = unit length.

$$ds^{2} = e^{2\phi(x,z)}(dx^{2} + dz^{2}).$$

Note: The original flat metric is given by (ϵ is UV cutoff):

$$ds^2 = \mathcal{E}^{-2} \cdot (dx^2 + dz^2).$$

Pirsa: 20110033 Page 11/42

A Sketch: Optimization of Path-Integral

Network (non Unitary)

Tensor

HyperbolicSpace H2

$$ds^2 = \frac{dx^2 + dz^2}{z^2}$$

$$ds^2 = \varepsilon^{-2} \cdot (dx^2 + dz^2).$$

A Sketch: Optimization of Path-Integral

High energy modes

Space X k>1/z are not important!

$$ds^2 = \varepsilon^{-2} \cdot (dx^2 + dz^2).$$

Tensor
Network
(non Unitary)

$$ds^2 = \frac{dx^2 + dz^2}{z^2}$$

The wave functional for CFT vacuum is given by

 $\Psi_{UV}^{g} \left[\Phi(x) \right] = \int \prod_{0 < z < \infty} D\Phi(x, z) \, e^{-S_{CFT}(\Phi)} \cdot \delta \left(\Phi(x) - \Phi(x, z = 0) \right)$

In CFTs, owing to the Weyl invariance, we have

$$\Psi_{UV}^{g_{ab}=e^{2\phi}\delta_{ab}} \left[\Phi(x)\right] = \exp\left(I[\phi(x,z)]\right) \cdot \Psi_{UV}^{\text{Flat}} \left[\Phi(x)\right].$$

Optimized wf.

Original wf.

Our Proposal (Optimization of Path-integral for CFTs):

Minimize $I[\phi(x,z)]$ w.r.t $\phi(x,z)$ with the boundary condition $e^{2\phi}|_{z=\varepsilon} = \varepsilon^{-2}$.

Pirsa: 20110033 Page 14/42

Motivation of Our Proposal

The normalization N of wave functional estimates repetitions of same operations of path-integration.

- → Minimize this!
- **⇒** Our conjecture:

 $Min[I[\varphi]] \sim Min\# of Tensors in TN$

≈ Computational complexity of TN state

[For a justification based on circuit complexity, refer to Camargo-Heller-Jefferson-Knaute 2019]

[cf. Holographic Complexity: Susskind 2014,Brown-Roberts-Susskind-Swingle-Zhao 2015, Lehner-Myers-Poisson-Sorkin 2016, Chapman-Marrochio-Myers 2016,...]

Pirsa: 20110033 Page 15/42

For 2D CFTs, I[φ] is given by the Liouville action!

$$I[\phi] = \operatorname{Log}\left[\frac{\Psi_{g=e^{2\phi}\delta_{ab}}}{\Psi_{g=\delta_{ab}}}\right] = S_L[\phi], \quad \text{# of Isometries}$$
[Czech 17]

of Unitaries

$$S_{L}[\phi] = \frac{c}{24\pi} \int dx dz \left[(\partial_{x} \phi)^{2} + (\partial_{z} \phi)^{2} + e^{2\phi} \right]$$

$$= \frac{c}{24\pi} \int dx dz \left[(\partial_x \phi)^2 + (\partial_z \phi + e^{\phi})^2 \right] + (\text{surface term})$$

$$\Rightarrow \text{Minimum: } e^{2\phi} = \frac{1}{z^2}.$$
 Hyperbolic plane (H2)
= Time slice of AdS3
$$ds^2 = (dx^2 + dz^2)/z^2.$$

$$ds^2 = \left(dx^2 + dz^2\right)/z^2$$

Pirsa: 20110033

Summary: Optimization of Path-Integral

Space X are not important!

Tensor

Network

(non Unitary)

= Hyperbolic Space H2

$$ds^2 = \frac{dx^2 + dz^2}{z^2}$$

Pirsa: 20110033

(2-2) Excited States and Back-reactions

Consider the vacuum state of 2d CFT on a circle dual to a global AdS3. |w|=1

The optimization of the path-integral of 2d CFT on a disk with leads to

$$ds^{2} = \frac{4dwd\overline{w}}{(1-|w|^{2})^{2}}.$$
 Hyperbolic Disk H2 = time slice of global AdS3

Now we insert an operator O(x) in the center of the disk x=x0. O(x): conformal dim. hL=hR=h

$$\Rightarrow O(x) \sim e^{-2h\cdot\varphi}.$$

Pirsa: 20110033 Page 18/42

$$\frac{\Psi_{g=e^{2\varphi}}}{\Psi_{\mathrm{Flat}}} \propto e^{\frac{c}{24\pi}S_L} \cdot e^{-2h\varphi(x_0)}.$$

Metric:
$$ds^2 = \frac{4d\zeta d\overline{\zeta}}{(1-|\zeta|^2)^2}$$
, $\zeta = re^{i\theta}$

 \Rightarrow Deficit angle geometry $\theta \sim \theta + 2\pi a$.

This agrees with the expected gravity dual if h/c<<1.

Note: the AdS/CFT predicts $a = \sqrt{1 - 24h/c}$.

Interestingly, if we consider the quantum Liouville CFT,

then
$$h = \frac{\gamma \alpha}{4} (Q - \alpha \gamma / 2.)$$
, $c = 1 + 3Q^2$, $(Q \equiv 2 / \gamma + \gamma)$.

$$\Rightarrow$$
 We get $a = \sqrt{1 - 24h/c}$.

Heuristic Summary

Pirsa: 20110033

3 An Application: Entanglement of Purification (3-1) Entanglement of Purification

When we divide a total system into A and B: $H_{tot} = H_A \otimes H_B^{\bullet}$ the entanglement entropy (EE) is defined by

$$S_A = -\text{Tr}[\rho_A \log \rho_A]. \qquad \rho_A = \text{Tr}_B[\Psi]\langle \Psi|]$$

The entanglement entropy is known to be a measure of quantum entanglement only for pure states.

We know that mixed states can always be purified:

$$\rho_{C} = \sum_{i} \lambda_{i} |i\rangle_{C} \langle i| \xrightarrow{H_{C} \to H_{C} \otimes H_{D}} |\Psi\rangle_{CD} = \sum_{i} \sqrt{\lambda_{i}} |i\rangle_{C} |i\rangle_{D}$$

$$\rho_{C} = \operatorname{Tr}_{D} [|\Psi\rangle\langle\Psi|]$$

Pirsa: 20110033 Page 21/42

Definition of EoP [Terhal-Horodecki-Leung-Divincenzo 2002]

Consider all purifications $|\Psi\rangle_{_{A\widetilde{A}B\widetilde{B}}}$ of \mathcal{P}_{AB} in the extended Hilbert space: $H_{_A}\otimes H_{_B}\to H_{_A}\otimes H_{_B}\otimes H_{_{\widetilde{A}}}\otimes H_{_{\widetilde{B}}}$.

Then, Entanglement of Purification (EoP) is defined by

$$E_{P}(\rho_{AB}) = \min_{\text{All purifications} |\Psi\rangle \text{ of } \rho_{AB}} S_{A\widetilde{A}}(|\Psi\rangle_{A\widetilde{A}B\widetilde{B}})$$

$$\rho_{AB} = \text{Tr}_{\widetilde{A}\widetilde{B}}[|\Psi\rangle\langle\Psi|] \quad \text{Entanglement Entropy}$$

Note: $E_p(\rho_{AB}) \ge 0$ and $E_p(\rho_{AB}) = 0 \Leftrightarrow \rho_{AB} = \rho_A \otimes \rho_B$.

Pirsa: 20110033 Page 22/42

(3-2) Holographic EoP

[Umemoto-TT 17, Nguyen-Deva -Halbasch-Zaletel-Swingle 17]

Conjecture .

$$E_{P}(\rho_{AB}) = \frac{\text{Area}(\Sigma_{AB})}{4G_{N}}$$

Entanglement Wedge Cross Section

ZAB: Minimal Surface of MAB

MAB: Minimal surface connecting δA and δB

Note: When ρ_{AB} is pure, we simply have $E_P(\rho_{AB}) = S_A = S_B$.

Standard Hol. EE

Pirsa: 20110033 Page 23/42

(3-3) EoP from Path-Integral Optimization [Caputa-Miyaji -Umemoto-TT 18]

Key Idea: Min over all purifications is realized by PI-opt!

Consider the setup when AB= a single interval:

Pirsa: 20110033 Page 24/42

The final optimized metric looks like

$$ds^2 = \frac{\epsilon^2}{\tau^2} \cdot dw d\bar{w} = \frac{\epsilon^2}{\tau^2} \cdot \frac{(b-a)^2}{4|b-y|^3|y-a|} \cdot dy d\bar{y} \equiv e^{2\tilde{\phi}} \cdot dy d\bar{y}.$$

In this setup, we obtain $e^{2\tilde{\phi}_P} = 1$ and $e^{2\phi_Q} = \frac{\epsilon^2(b-a)^2}{4(q-a)^2(q-b)^2}$. The entanglement entropy $S_{A\tilde{A}} = S_{B\tilde{B}}$ is found to be

$$\begin{split} S_{A\tilde{A}} &= \frac{c}{3} \log \left(\frac{q-p}{\epsilon} \right) + \frac{c}{6} \tilde{\phi_P} + \frac{c}{6} \tilde{\phi_Q} \\ &= \frac{c}{6} \log \left[\frac{(b-a)(q-p)^2}{2\epsilon (q-a)(q-b)} \right], \end{split}$$

Minimize w.r.t q

$$S_{A\tilde{A}}^{min} = \frac{\mathcal{E}}{6} \log \left[\frac{2(p-a)(b-p)}{\epsilon(b-a)} \right],$$
 at $q = \frac{2ab - (a+b)p}{a+b-2p}.$

$$ds^2 = \frac{dx^2 + dz^2}{z^2}$$

$$\mathsf{L}(\Sigma) = \frac{q-p}{2} \int_{\epsilon}^{z_0} \frac{dz}{z\sqrt{\frac{(q-p)^2}{4}-z^2}} = \log\left[\frac{2(p-a)(p-b)}{\epsilon(b-a)}\right].$$

The Hol EoP L(Σ)/4G agrees with the CFT result!

Pirsa: 20110033 Page 26/42

(3-3) EoP from Path-Integral Optimization [Caputa-Miyaji -Umemoto-TT 18]

Key Idea: Min over all purifications is realized by PI-opt!

Consider the setup when AB= a single interval:

Pirsa: 20110033 Page 27/42

The final optimized metric looks like

$$ds^2 = \frac{\epsilon^2}{\tau^2} \cdot dw d\bar{w} = \frac{\epsilon^2}{\tau^2} \cdot \frac{(b-a)^2}{4|b-y|^3|y-a|} \cdot dy d\bar{y} \equiv e^{2\tilde{\phi}} \cdot dy d\bar{y}.$$

In this setup, we obtain $e^{2\tilde{\phi}_P} = 1$ and $e^{2\phi_Q} = \frac{\epsilon^2(b-a)^2}{4(q-a)^2(q-b)^2}$. The entanglement entropy $S_{A\tilde{A}} = S_{B\tilde{B}}$ is found to be

$$\begin{split} S_{A\tilde{A}} &= \frac{c}{3} \log \left(\frac{q-p}{\epsilon} \right) + \frac{c}{6} \tilde{\phi_P} + \frac{c}{6} \tilde{\phi_Q} \\ &= \frac{c}{6} \log \left[\frac{(b-a)(q-p)^2}{2\epsilon (q-a)(q-b)} \right], \end{split}$$

Minimize w.r.t q

$$S_{A\tilde{A}}^{min} = \frac{c}{6} \log \left[\frac{2(p-a)(b-p)}{\epsilon(b-a)} \right],$$
 at $q = \frac{2ab - (a+b)p}{a+b-2p}.$

Holographic EoP

Path-integral Optimization ...

$$E_{p}(\rho_{AB}) = \frac{c}{6} \log \frac{w_1 w_2}{(w_1 + w_2)\delta}$$

Confirmed by direct Gaussian numerical calculations in free scalar/fermion CFT!

[Camargo-Hackl-Heller-Jahn-TT, 2020]

Free Scalar CFT

Free Fermion CFT

This provides a further support of path-integral optimization as well as Hol. EoP conjecture!

Pirsa: 20110033 Page 29/42

4 Connection between PI-Optimization and AdS/CFT

[Boruch-Caputa-TT, 2020]

We observed that a time slice of AdS emerges from our path-integral optimization. This raises the question:

Q. What does optimization mean in AdS/CFT?

Heuristic Expectation

Pirsa: 20110033 Page 30/42

One might think the optimization corresponds to *a saddle point approximation* of some quantum gravity.

However, a saddle point approximation does not give a minimum but a maximum!

This is important when we would like to take into account quantum gravity (=1/c) corrections in AdS/CFT.

Pirsa: 20110033 Page 31/42

Consider **Hartle-Hawking wave function** on a time slice in AdS3 gravity, with an initial condition on the AdS bdy ∑.

Pirsa: 20110033 Page 32/42

By evaluating the HH wave function using classical gravity action, we obtain (we assume $\partial_x \phi = 0$ and write $\dot{\phi} \equiv \partial_w \phi$

$$\begin{split} & \Psi_{HH}^{(T)}[e^{2\phi}\delta_{ab}] \approx e^{-I^{(T)}[\phi] + I^{(T)}[\phi_0]}, \qquad (e^{\phi_0} = 1/\varepsilon) \\ & I^{(T)}[\phi] = \frac{c}{12\pi} \int dx dw \Big[e^{2\phi} \sqrt{1 - \dot{\phi}^2 e^{-2\phi}} + \dot{\phi} \text{ArcSin}[\dot{\phi}e^{-\phi}] \Big] - \frac{c}{12\pi\varepsilon} \int dx \theta_0 \end{split}$$

When the UV cut off is dominant $\dot{\phi}^2 << e^{2\phi}$, we can trust the continuum limit of field theory. In this case, we have

$$I^{(T)}[\phi] \approx \frac{c}{24\pi} \int dx dw [\dot{\phi}^2 + 2e^{2\phi}] - \frac{c}{12\pi} \int dx \text{ArcSin} \sqrt{1 - T^2}.$$

Indeed we reproduce the Liouville action!
The HH wave function gives finite cut off corrections.

Pirsa: 20110033 Page 33/42

Therefore, we can interpret the PI-optimization as an optimization of HH wave function $\Psi^{(T)}_{HH}[e^{2\phi}\delta_{ab}]$:

$$\langle O_1 O_2 \cdots O_n \rangle = \int D\phi \left| \Psi_{HH}^{(T)}[\phi] \right|^2 O_1 O_2 \cdots O_n.$$

$$\Rightarrow \operatorname{Min}[I^{(T)}[\phi]]$$

Indeed, its saddle point approximation lead to the maximization of $\Psi_{HH}^{(T)}[e^{2\phi}\delta_{ab}]$, leading to the EOM:

$$\ddot{\phi} + \dot{\phi}^2 - 2e^{2\phi} = 2Te^{2\phi}\sqrt{1 - e^{-2\phi}\dot{\phi}^2}$$
Solution
$$e^{2\phi} = \frac{1}{(1 - T^2)w^2}$$
Agree with PI-optimization
$$T=1$$
Small T

Pirsa: 20110033 Page 34/42

Therefore, we can interpret the PI-optimization as an optimization of HH wave function $\Psi^{(T)}_{HH}[e^{2\phi}\delta_{ab}]$:

$$\langle O_1 O_2 \cdots O_n \rangle = \int D\phi \left| \Psi_{HH}^{(T)}[\phi] \right|^2 O_1 O_2 \cdots O_n.$$

$$\Rightarrow \operatorname{Min}[I^{(T)}[\phi]]$$

Indeed, its saddle point approximation lead to the maximization of $\Psi_{HH}^{(T)}[e^{2\phi}\delta_{ab}]$, leading to the EOM:

Pirsa: 20110033 Page 35/42

The Liouville potential and the tension of the brane Q is related via $\mu = 1 - T^2$.

This allows us to rewrite the AdS3 metric as follows:

$$ds^{2} = \frac{d\mu^{2}}{4\mu^{2}(1-\mu)} + e^{2\phi(w)}(dw^{2} + dx^{2})$$

Emergent Time direction = the energy scale (μ) of path-integral optimization Optimized CFT metric at the scale μ

$$e^{2\phi} = \frac{1}{\mu w^2}$$

Generalizations

We can also generalize the HH-wave function derivation of PI-optimization to

Higher Dim. CFTs

BTZ black holes

JT gravity

CFT analysis looks difficult because we need more than the Weyl transformation to optimize PI.
But for Holographic CFTs,
HH-wave function gives an answer!

For details refer to arXiv:2011.08188 [Boruch-Caputa-TT]

Pirsa: 20110033 Page 37/42

The Liouville potential and the tension of the brane Q is related via $\mu = 1 - T^2$.

This allows us to rewrite the AdS3 metric as follows:

$$ds^{2} = \frac{d\mu^{2}}{4\mu^{2}(1-\mu)} + e^{2\phi(w)}(dw^{2} + dx^{2})$$

Emergent Time direction = the energy scale (μ) of path-integral optimization Optimized CFT metric at the scale μ

$$e^{2\phi} = \frac{1}{\mu w^2}$$

Generalizations

We can also generalize the HH-wave function derivation of PI-optimization to

Higher Dim. CFTs

BTZ black holes

JT gravity

CFT analysis looks difficult because we need more than the Weyl transformation to optimize PI.
But for Holographic CFTs,
HH-wave function gives an answer!

For details refer to arXiv:2011.08188 [Boruch-Caputa-TT]

Pirsa: 20110033 Page 39/42

⑤ Conclusions

• We expect that the AdS/CFT provides a geometrization of real space renormalization. ⇒ Conjectured connection to TN. But, the direct TN approaches suffer from lattice artifacts etc.

0

- We argued that the path-integral optimization gives a definite framework which covers also a continuum limit.
- We found: An PI-optimized geometry = a time slice of AdS
- We gave the explicit connection between the AdS/CFT and PIoptimization by considering the Hartle-Hawking wave function.
- ⇒ PI-optimization = saddle point calculation of HH wave function.

⇒ We can consider quantum fluctuations!

Pirsa: 20110033 Page 40/42

Future problems

- Meaning of Emergence of Time? Metric in the time direction?
- Time-dependent b.g.?
- Implications of large N strongly coupled CFTs and Bulk locality?
- dS/CFT version ? (Formally, μ <0)

:

Pirsa: 20110033 Page 41/42

⑤ Conclusions

- We expect that the AdS/CFT provides a geometrization of real space renormalization. ⇒ Conjectured connection to TN.
 But, the direct TN approaches suffer from lattice artifacts etc.
- We argued that the path-integral optimization gives a definite framework which covers also a continuum limit.
- We found: An PI-optimized geometry = a time slice of AdS
- We gave the explicit connection between the AdS/CFT and PIoptimization by considering the Hartle-Hawking wave function.
- ⇒ PI-optimization = saddle point calculation of HH wave function.

⇒ We can consider quantum fluctuations!

Pirsa: 20110033 Page 42/42