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Abstract: In this talk we will start with areview of path-integral optimization, which provides a useful description of non-unitary tensor networks for
Euclidean path-integrals in CFTs. We will explain an emergence of AdS geometry in this method and an interpretation as a computational
complexity. Next we will give its application to analytical calculations of entanglement of purification, which was quite recently reproduced by
numerical calculations. Finally, we would like to present a derivation of a path-integral optimization method directly from the ADS/CFT.
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(1 Introduction

AdS/CFT [Anti de-Sitter space/Conformal Field Theory] [Maldacena 1997]

‘ Gravity on D+1 dim. AdS = D dim. CFT on bdy ‘

AdSD+1 Metric of AdSd+1
2 d—l
dz —df +3 " d¢
5

Z

o

CFTd as’ =R’

Boung

Z = alength scale of RG flow

= “‘Geometrization” of Renormalization Group Flow
[AdS = Real Space Renormalization]
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An essence of this emergence of geometry from QFTs is

Quantum entanglement

= “‘Geometry” of Quantum States in many-body system

In AdS/CFT, the entanglement entropy is computed as
the area of minimal surface [Ryu-TT 06, Hybeny-Rangamani-TT 07]

SA — _Tr[/OA 1Og /OA] ,  Pu=15p,,

g Area(y,) Area(y,)
A ~ 41
4G \ [ 5
Area in'the unit
of Planck length

Boundary
=CFTg Bulk=AdSd+1

2%
Planck length ~ 1 qubit
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Spacetime in gravity = Collections of bits of entanglement
= Real space renormalization ?
= Tensor Networks !

MERA [vidal 05 / Coarse-graining = Isometry
T —
A=Coarse-graining [T]G’bc [T]bcd o 56:0’

b
B=disentangler _._a d —a_d
\

\ Disentangler
= Unitary trf.

|Og|_ SA < Mln[# hnkS]
oc log L.

% % 0 0873809 01.0, 9,900 0u i, 0, O O uzoa —> agrees with
A (length L) .
resultsin 2d CFT!

Real space renormalization flow

Pirsa: 20110033 Page 6/42



_ (
This suggests

a connection:
[Swingle 2009]

However, 3 many difficulties:[ Beny 2011, Bao et.al. 2015, Czech et.al. 2015]
* The MERA has a causal structure but the time slice does not ?

* Why is the EE bound saturated ?

* How can we find the sub-AdS Ioc‘glity ? (i.e. approximation by GR ?)

Though there are improvements of models/interpretations:

[Perfect TN: Pastawski-Yoshida-Harlow-Preskill 15]

[Kinematical Space: Czech-Lamprou-McCandlish-Sully 15]

[Random TN: Hayden-Nezami-Qi-Thomas-Walter-Yang 16]

[Matchgate TN: Jahn-Gluza-Pastawski-Eisert 17] [Hyper inv. TN: Evenbly 17]
[P-adicTN: Bhattacharrya-Hung-Lei-Li 17] [TN geometry: Misted-Vidal 18],.....

, the true connection between TN and AdS is not still clear.
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Our Key Observations towards AdS/TN

[1] A disadvantage of the original TN approach is the presence of
discretized structure. The genuine AdS/CFT is continuous.

[2] To describe a time slice of AdS, it looks better to regard it
©
as a Euclidean evolution rather than Lorentzian one.

A Time slice of AdS
= Continuous TN from Euclidean CFT path-integrals ?

Motivated by this, we give an alternative approach based
on path-integrals, related to a continuum limit of TNs.

= Path-integral Optimization !
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tensors to make the TN efficient.

- We will describe the discretized lattice structure by
the metric in a continuous way and remove unnecessary

(o

ur guiding principle

Eliminating unnecessary tensors in TN for a given state
= Creating the most efficient TN (= Optimization of TN)

4=) Solving the dynamics of Gravity (i.e. Einstein eq.)

\
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@ Path-Integral Optimization and CFT
(2-1) Formulation

A Basic Rule: Simplify a path-integral s.t.
it produces the correct UV wave functional.

Consider 2D CFTs fE)r simplicity. (z=- Euclidean time, x=space)

Deformation of discretizations in path-integral
= Curved metric such that one cell (bit) = unit length.

W (ds® =™ (d’ +d2?).

Note: The original flat metric is given by (g is UV cutoff):
ds’ = &7 -(dx’ +dz%).
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(@ Path-Integral Optimization and CFT
(2-1) Formulation

A Basic Rule: Simplify a path-integral s.t.
it produces the correct UV wave functional.

Consider 2D CFTs for simplicity. (z=- Euclidean time, x=space)

Deformation of discretizations in path-integral
= Curved metric such that one cell (bit) = unit length.

B (ds® =™ (di’ +dz2?).

Note: The original flat metric is given by (g is UV cutoff):
ds® =% -(dx’ +dz%).
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A Sketch: Optimization of Path-Integral

,=0 Vi [@W] oc ¥ [@)]
1E
e
Tim Optimize
7 »
7 =O9P| X

High energy modes
Space X k>1/z are not important

ds’ =& -(dx” +dz%).
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Tensor ==

Network
(non Unitary)

g

= Hyperbolic

Space H2
I 2 2
dS2 _ dx +2dZ

Z
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A Sketch: Optimization of Path-Integral

=¥ [P®)] oc pee [(x)]
1E
A’E
Tim Optimize
-7 »
7 =O9P| x

High energy modes
Space X k>1/z are not important

ds’ =& -(dx” +dz%).
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Tensor =

Network
(non Unitary)

g

= Hyperbolic

Space H2
I 2 2
dS2 _ dx +2dZ

2
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The wave functional for CFT vacuum is given by
/gab(x,z): background metric

Vg [o)]=[ T]pox.2)e - 5(d(x) - d(x,z=0))

Q<Z<oo
—0< X<

In CFTs, owing to the Weyl invariance, we have

W= [D(x)] = exp(I[¢(x, 2)])- Wiy [@(x)]
Optimized wf. Original wf.

Our Proposal (Optimization of Path-integral for CFTs):

Minimize I[é(x,z)] w.rt @(X,2)
with the boundary condition e’ = g,
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Motivation of Our Proposal

The normalization N of wave functional estimates

repetitions of same operations of path-integration.
- Minimize this !

= Our conjecture:

Min[ I[p]] ~ Min# of Tensors in TN

~ Computational complexity of TN state

[For a justification based on circuit complexity, refer to Camargo-Heller-
Jefferson-Knaute 2019 ]

[cf. Holographic Complexity: Susskind 2014,Brown-Roberts-Susskind-

Swingle-Zhao 2015, Lehner-Myers-Poisson-Sorkin 2016, Chapman-
Marrochio-Myers 2016,...]
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For 2D CFTs, I[9] is given by the Liouville action ! = -}

7] 7 Liouville Action

_ g=€2¢5ab —
I[¢]=Log =3:12). 4 of 1sometries /L\

¥ o
| T80 [Czech 17]
# of Unitariesx

S, [4]= ﬁ | dxdz[({ax@z +(0.9) v

= ﬁ j dxdz|(0 ¢)° + (6Z¢ +ef )2 ]+ (surface term)
T
i Hyperbolic plane (H2)
— Minimum: e = —-. = Time slice of AdS3

- ds? = (d® +d2*) ] 2°.
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Summary: Optimization of Path-Integral

LP[l;?t :q)(x)] oc \Pg;ew :q)(x)] (non Unitary)

Tim Optimize “
. m)

= Hyperbolic
% Space H2

—_—y UV modes k>1/z , B2 4 de?

Space X  are not important ! ds 5
z
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(2-2) Excited States and Back-reactions

Consider the vacuum state of 2d CFT on a circle
dual to a global AdS3. lw|=1

The optimization of the path-integral

of 2d CFT on a disk with leads to

ds? = 4dwdw _ ‘ Hyperbolic Disk H2
(- w|*)’ = time slice of global AdS3

Now we insert an operator O(x)
in the center of the disk x=x0.
O(x): conformal dim. hL=hR=h lw|=1

= O(x)~ e,
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Minimize

1 671

Y ., < 2 : n
_ 8¢ e . —zhf,o(xo) » auauq)__e ¢4 S (w) = .
lIJF lat C -

A Solve
4
Metric: ds” = G f =, = re'’
(-1<1)

= Deficit angle geometry @ ~ @ + 2.

This agrees with the expected gravity dual if h/c<<1.

Note: the AdS/CFT predicts a = \/1—2411/0.
Interestingly, if we consider the quantum Liouville CFT,

then hz%(Q—ay/Z), c=1+30>. (Q=2/y7+7).

= Weget g=+/1-24h/c.
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Heuristic Summary

Time

Optimize

We locally need a fine graining

Local excitation = The metric gets larger !

(energy saarce)

This agrees with
general relativity !

Information Source = Back-reactions in GR
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® An Application: Entanglement of Purification -
(3-1) Entanglement of Purification g

When we divide a total system intoAandB:H =H ®H *
the entanglement entropy (EE) is defined by

S, = _Tr[pA log IOA]' 2 TrBH\PX\PH

The entanglement entropy is known to be a measure of
quantum entanglement only for pure states.

We know that mixed states can always be purified:
> < H. —>H ®H,

- |¥),- 24,

pe =T, | ¥)(¥]
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Definition of EQOP [Terhal-Horodecki-Leung-Divincenzo 2002]

Consider all purifications“l’)AgBE of 0,5 in the
Hilbert space: H,QH, >H,®H,®H ®H,
T

Then, Entanglement of Purification (EoP) is defined by

Ep(p45)= Min SAIJ (I LP>4ZBE )

All puriﬁcations|‘P>of DOAB

P = TI‘;;{B—-HLPXKP‘] Entanglement Entropy

Note: E (0,,)20 and E (0,5) =0 o= p,® pp.
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- 1 [Umemoto-TT 17, Nguyen-Deve
(3 2) Holographlc EoP -Halbasch-Zaletel-Swingle 17]

Conjecture

E ( ) . Area(zAB) Entanglement Wedge
p\PaB) = 4G Cross Section
N

ZAB : Minimal Surface of Mas

B

MAB: Minimal surface
connecting 0A and 0B

A

we simply have E,(p,;)=S,=S,. Hol. EE
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[Caputa-Miyaji
(3-3) EoP from Path-Integral Optimization _ | emoto-TT 18] |

Key Idea: Min over all purifications is realized by Pl-opt !

Consider the setup when AB= a single interval:

A=[a,p] B=[p,b]: = A=[-e,a]U[g,>2] B=[b,q]
apb . £

A B y2 V e 1w
~ ~ B:
- A A B :

PAB= of (Fet=ta mp "le

T BE’A?A B

L 2 - * 0 ”

ap q .yl[ -0co oo ¢
y—a

Conformal Map |w =
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The final optimized metric looks like

2 2 R
ds®> = — . dwdw = E (6—a)

, i dydy = 2. dydg.
T2 72 4]b — y|3|y — g yay =¢ Jey

) TN (N 2do __ e*(b—a)”
In this setup, we obtain e“?? =1 and e*¥2 = A(a—0)2(qD)%"

The entanglement entropy S, ; = Spp is found to be

% (Q—}J)_i_ —ép + é@

6 Qﬁ(q—@)(q—b)
Minimize e [p-a)b—p)
w.rt g Sui =71 { e(béa) }’

- at g — 2ab — (a+ b)p
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Calculations of Hol EoP in AdS3/CFT2

Z
A
i’ +dz*
ds* =
[ T Zz
— - X
X 0
g—ipl < dz 2@ — a)(p — b)

2= ) e L

m) The Hol EoP L(2)/4G agrees with the CFT result !
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[Caputa-Miyaiji
(3-3) EoP from Path-Integral Optimization _emoto-TT 18] |

Key Idea: Min over all purifications is realized by Pl-opt !

(-]

Consider the setup when AB= a single interval:

A=[a,p] B=[p,b]: = A=z[-e,a]U[g,>2] B=[b,q]
apb . |

A B y2 V e w
~ ~ B:
- A A B :

PAB= of (Fet=tel mp " le

T T B PAIA B

- - + 0 ”

ap q .yl[ -0o oo ¢
y—a

Conformal Map |w =
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The final optimized metric looks like

2

et 1 e

TQ

62

(b— a)?

T2

4b— y°ly— |

dydy = 2. dydy.

N 3 .
In this setup, we obtain e2®P — 1 and oeﬁc;’)Q _ _ € (b=a)

4(g—a)*(g—b)*"

The entanglement entropy S, ; = Spp is found to be

c g—p\ ¢~ ¢
SA/@=§IOQ,(\ p )—l—géP—l—EéQ
— Elog [ b-a)le—p) } )
6 2¢(g —a)(q —b)
Minimize ‘
t sz}z . El o ‘?’(p s a’) (b - p)
w.r.t q AA 6 e(b—a) ’
- 2ab — (a+ b)p
at g = —.

a+b—2p
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Holographic EoP Path-integral Optimizatior u..f

i
=B

C W, W.
E —~1lo 11¥%2 wl w2
p(pAB) 6 g(Wl )0 4;»:

Confirmed by direct Gaussian numerical
calculations in free scalar/fermion CFT !

[Camargo-Hackl-Heller-Jahn-TT, 2020]

©°

Free Scalar CFT Free Fermion CFT

T "I~ | This provides a further

S I x__ L 0sof N .
Ssot /o A E5.d/ e V| support of path-integral
5 oS ol il optimization as well as

{ Hol. EoP conjecture !

0.0 0.2 0.4 0.6 0.8 1.0 EJ.IE] 0.2 0.4 0.6 0.8 1.0

Wy f (Wat+ivg) Wy f (g +ivg)
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@ Connection between PI-Optimization and AdS/CFT
[Boruch-Caputa-TT, 2020]

We observed that a time slice of AdS emerges from our
path-integral optimization. This raises the question:

[ Q. What does optimization mean in AdS/CFT ?

Heuristic Expectation

/ UV quantum state (ground state)

CFT2 ~
AdSs3

ptimized”’ Euclidean
Path-integral of CFT

Pl-optimizati
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. 2?5 b
Pl-optimization = Mln[\Pﬁgb - [(D(x)]]
¢

One might think the optimization corresponds to
a saddle point approximation of some quantum gravity.

However, a saddle point approximation does not
» give a minimum but a maximum !

This is important when we would like to take into account
quantum gravity (=1/c) corrections in AdS/CFT.
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Consider Hartle-Hawking wave function on a time slice (" ‘j‘l
in AdS3 gravity, with an initial condition on the AdS bdy >. e

-I;[g]-T|e*

Vile?s, 1= Dg e AN 5(g\Q

—ez¢5ab)

\ "Te\nsion"
Metric on Q ~bdy cosmological const.

term

UEE|dst|,= e (dw? +dx)

Z:

L
""/ AdS3

>
ds sy =

dz> +dt’> +dx’

2
&
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By evaluating the HH wave function using classical gravity = -4
action, we obtain (we assume 0.9 =0 and write¢ =0 ¢ .58

YDe?s 1~ ‘ﬂ”[mu(”w@] (e" =1/¢)

. . 2
Minus sign

I7[4] = j dxdw[ 21— ¢2e—2¢ + dArcSin|de ]]

[ b,

127&

When the UV cut off is dominant ¢.2 << e”’ , we can trust
the continuum limit of field theory. In this case, we have

ID[4] ~ j dxcin|g’ +2e2¢]—— [ dxAresiny1-77.

¥

Indeed we reproduce the Liouville action !
The HH wave function gives finite cut off corrections.
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Therefore, we can interpret the Pl-optimization as an
optimization of HH wave function W\.)[e*’S ] :

(M
‘Pg} ce’! [m]

— Min[/?[4]]

(00,-0,)=[ Dol 318 00,0, 1

Indeed, its saddle point approximation lead to the
maximization of P )[e*’5 , ], leading to the EOM:

T

b +§7 =26 =2Te \[1-e po

Z
.' Solution Q
1 Agree with

7 7 PI-optimization
(I-7")w T=1 Small T

el =
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Therefore, we can interpret the Pl-optimization as an
optimization of HH wave function W\.)[e*’S ] :

(M
‘Pg} ce’! [m]

= Min[/"[4]]

(00,-0,)= [ Dol 181 00,0,

Indeed, its saddle point approximation lead to the
maximization of W )[e*5 ,], leading to the EOM:

T

b+ ¢ =26 =2Te* \J1-e o

Z
.' Solution Q
1 Agree with o

2 7 PI-optimization
(I-7")w T=1 Small T

et =
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The Liouville potential and the tension of the brane Q
isrelatedvia u=1-7".

This allows us to rewrite the AdS3 metric as follows:

2
2o AT o i)
4p(1-p)
° = . S

Emergent Time direction Optimized CFT metric
= the energy scale (u) of at the scale p
path-integral optimization 1

e* =

2

UwW
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Generalizations

We can also generalize the HH-wave function derivation
of Pl-optimization to

* Higher Dim. CFTs ‘ CFT analysis looks difficult because
we need more than the Weyl
* BTZ black holes

transformation to optimize PI.
* JT gravity But for Holographic CFTs,
HH-wave function gives an answer !

For details refer to arXiv:2011.08188 [Boruch-Caputa-TT]
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The Liouville potential and the tension of the brane Q
isrelatedvia u=1-7".

This allows us to rewrite the AdS3 metric as follows:

2 du’

— 1.2
4p-(1-up)
N g
S ~
Emergent Time direction Optimized CFT metric
= the energy scale (n) of at the scale p
path-integral optimization 1

e* =

+e” (dw” +dx”)

2

UwW
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Generalizations

We can also generalize the HH-wave function derivation
of Pl-optimization to

* Higher Dim. CFTs ‘ CFT analysis looks difficult because
we need more than the Weyl
* BTZ black holes

transformation te optimize PI.
* JT gravity But for Holographic CFTs,
HH-wave function gives an answer !

For details refer to arXiv:2011.08188 [Boruch-Caputa-TT]
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®) Conclusions

S

* We expect that the AdS/CFT provides a geometrization of real
space renormalization. = Conjectured connection to TN.

But, the direct TN approaches suffer from lattice artifacts etc.

(=]

* We argued that the path-integral optimization gives a definite
framework which covers also a continuum limit.

* We found : An Pl-optimized geometry = a time slice of AdS

* We gave the explicit connection between the AdS/CFT and PI-
optimization by considering the Hartle-Hawking wave function.

= Pl-optimization = saddle point calculation of HH wave function.

= We can consider quantum fluctuations !
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Future problems

* Meaning of Emergence of Time ? Metric in the time direction ?
* Time-dependent b.g. ?

* Implications of large N strongly coupled CFTs and Bulk locality ?
* dS/CFT version ? (Formally, u<0)

o
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®) Conclusions

* We expect that the AdS/CFT provides a geometrization of real
space renormalization. = Conjectured connection to TN.

But, the direct TN approaches suffer from lattice artifacts etc.

* We argued that the path-integral optimization gives a definite
framework which covers also a continuum limit. e

* We found : An Pl-optimized geometry = a time slice of AdS

* We gave the explicit connection between the AdS/CFT and PI-
optimization by considering the Hartle-Hawking wave function.

= Pl-optimization = saddle point calculation of HH wave function.

= We can consider quantum fluctuations !
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