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Abstract: The search for applications of quantum computers has highlighted the field of quantum chemistry, where one can also apply tensor
network methods. There are severa challenges in getting useful results for molecules compared to simulating a model Hamiltonian in condensed
matter physics. The first issue is in descretizing continuum space to get a finite Hamiltonian which is amenable to tensor network techniques.
Another is the need for high accuracy, particularly in energies, to compare with experiments. | will give an overview of the approaches used in this
field, and then focus on our work using grid and wavel et-based discretizations coupled with DMRG methods.
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Tensor Networks and Quantum Che

G()Og]e’s Quantum Computer Quantum computers are making
Achieves Chemistry Milestone quantum chemistry famous!

A downsized version of the company’s Sycamore chip performed a record-breaking
simulation of a chemical reaction

L . Drug design, new materials,
Scientific American g desig ials, $$ 8

e —

What about using tensor networks for simulating quantum chemistry?

Renormalization-group approach for electronic structure | have been thinking about
Steven R. White, John W, Wilkins, and Kenneth G. Wilson 1 1
P:"lys. Rev. Lett. 56, 412 — Published 3 Februatry 1986 thls ﬁeld since grad SChOOI'

Qutline

* Overview of quantum chemistry
* Our work using wavelets and DMRG
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Hamiltonian and Energy scales

1 -Z 1 1 N electrons, N. nucldss
—_— 2 a ] a
H=-- Y VIR — 2 +35 > ——

i a.i |r'_Ra| | /

1/a? Zla l/a Putting H on a grid, spacing a

KE ensures y(r, 1y, ...) is generally very smooth (not a field theory!)

except for cusp singularities at fixed R, and in relative coords when r; = 7; o2l

The first two terms are one particle,“easy”.

The long-range part of the two-el |/r is crucial for charge neutrality, but it
couples many electrons at once.

The short range part is reduced by 3D volume element rdr.

Both effects suggest mean-field treatment: Hartree Fock, and density functional
theory. Underlying both is a single Fermion determinant.

DFT cleverly interpolates QMC correlation energies of an interacting el gas, plus
exact sum rules, etc—works fine for many molecules and solids.

Strongly correlated is usually synonymous with “DFT doesn’t work”
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Strong correlation
stretched

Many molecules weakly
correlated at equilibrium
become strongly correlated
during chemical reactions

H
1
y(r,n) ~ E[%(”l)fﬁz(rz) + ha(r)py(ry)] l//(rla 1’2) ~ ¢(r1)¢(r2)

spatial part only
¢~ p+

.
H H

Strong correlation methods

Nearly weakly correlated: perturbation theory, coupled cluster,
configuration interaction(diag within few-excitation subspace)
Strongly correlated but small (exact diag)

Quantum Monte Carlo (but sign problem)

DMRG (fairly small or ID)
We would love to add PEPS to this list! (Garnet Chan)
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Mapping the continuum to a discrete Hamiltonian

*Almost all electronic structure methods use a basis

*Plane waves: standard for solids (periodic box). Analytic integrals

=Requires smoothing out the nuclear cusps (pseudopotential). Nonlocality: volume law

Atom centered Gaussians J N\

= Highly adapted to each atom. Analytic integrals. 5-10 Gaussians to give e

~2rl very

accurately, so excellent at nuclear cusp.

{(F)}

= Nonorthogonal, orthogonalizing makes them nonlocal (somewhat)

= Two-electron interaction has four indices Vijk,

I
*Hamiltonian: Z ko + 5 Z Vi CI-LC}LC]CJ'C;J

ijo ijkloo’
*Most correlation methods start from this Hamiltonian

*(Usually they start by rotating basis to Hartree Fock orbitals)
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Quantum ChemiStry DMRG (White and Martin, 1999, T. Xiang, Garnet Chan..
*Complementary operators: complexity N°m?> — N°m? + N*m?

Vi €; CTC Cl1 — CTO O; = Vi e e with i in left block, j,k,| in right block

*White and Martin: ~25 Gaussians, transformed basis to HF molecular orbitals, to
treat one stretched water molecule

*Progress in two decades: ~100 active orbitals, selected from bigger Gaussian basis

*Only treat valence levels (“active space”): truncation or integrate out other orbs

Impressive calculations

- of the oxygen evolving Still ve ry far from
g complex, responsible for what we can simulate
photosynthesis (Chan’s

group) [technical note: with local models

split localization]

structure 1
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Going beyond QCDMRG

 Our main effort has focused on improving the construction of H, allowing DMRESL
and PEPs to work as well as in Hubbard models

*Better locality (Aréa Law)

*Reduced complexity of the two electron interaction V;,

) ) Miles Stoudenmire, Kieron
Our first two approaches used |D grid representations Burke, Lucas Wagner, ...

20 40 60 80 100 120

—

<
N

L |
T

* 1D grids for toy continuum models
* Up to 100 pseudoatoms—4000 lattice sites

» Grid gives interactions as V;

* Key to success was MPO compression
* Useful as a toy system to understand DFT (Kieron Burke)

e
[}
1

T

S
¥}
I

Total Electron Density
=
I

11— Exact (DMRG) —— Unrestricted LSDA — Restricted LSDAT I
160 180 200 220 240 260 280

o

* Sliced basis sets (real hydrogen chains)
* Use a ID grid for the long direction p—
* Use Gaussians for transverse directions (1-12 Gaussians) :z
* For long chains, nicely surpasses QCDMRG (linear scaling
in length, 1000 atoms!) o I oo ooz
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Improving our grids: MERA and wavelets

*Our ultimate goal is to generate very coarse, very accurate 3D grids for use with
DMRG and PEPS. Can we use MERW to decimate our grids!?
*At small spacing, KE dominates. So think first about single-particle framework, 1D

r I I I I I I Simplest MERA layer
The same diagram can represent the usual tensor
o, |6, : :
product space or a much simpler direct sum space.

a.l g Same idea as a Fourier transform vs Fourier
T TTTT T ] 2| | 2| | transforming the fermion creation operators

How do we choose the disentanglers and isometries (2x2 unitaries)! Make the
states we throw out (dots) orthogonal to low order polynomials. Then the states

we keep represent all smooth functions. @ ;\ wi o]
This recipe generates Daubechies’ famous wavelets VAN
q:(r) 5:(r)
Thus: iR
|) wavelet technology can help us get coarse grids '-i}:_f.f\\lqzlz
2) MERA technology can help make better wavelets a0 |ls0) %

position, r

Y
q2(r)  q:(r)

momentum, k
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MERA-inspired Wavelet transforms (Evenbly and White)
(b)

u(7/4) }U, cosf sind .
v(8,) 3 | —qi
1o, ﬂ ﬂ — sinf cosé@ .
v(6,)—=m 1.1 % 0 0 cos@ sind
v(8,) 0 O —sinf@ cosé

b,

. Quantum circuit ‘ Example of translation of circuit diagram into unitary
reinterpreted as a matrix matrices as part of WTs: 4x4 matrix instead of 2% x 2*

Ternary gates allow for symmetric, compact
wavelets—with binary gates, impossible

(a) Site-centered Symmetnc (a) Type | (site centered symmetric), depth N =6
+ _
A A A 0.8 S - b* b

-0.8
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Gausslets—a variation on our ternary wavelets with analytic i

Instead of using the scale-invariant functions, apply the wavelet transform once

Gaussians, with an extra “orthogonalizer” layer in between [whice,|. chem. phys. 147, 244102 (2017
*

(b)

s - . . 1 - To use them, all you
(6) g () = Z iexPl=5 82 = )7 heed is the array of b,
v(6,)—t== by, !

' ru,
"'(83) }V1 r T
= Weeks of ik
limited range approximate nonlinear -

orthogonalizer

optimization Put one gausslet

L I

Uniform array of gaussians 02 on each grid
point. Can form
of the bottom layer

Exactly orthonormal for further MERA

Polynomial completeness to [0th order -4
Integrates like a o-function to 20th order

“Gausslet”
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Diagonal Approximations with gausslets
» Suppose we have a function G(x) that we place on grid
points, with <G(x-i)|G(x-j)> = dij, with polynomial
completeness, and a polynomial delta-function property:

/dﬂ? Gz —j)¢(x) = ¢(j) \ & a polynomial
*One particle potential: as part of Schrodinger eqgn, let
Y (x)=U(x) ¢(x). Standard derivation: Yi=<G(x-i)|¥(x)>, etc,
gives standard result, Vi = Uij ¢j; Uij appears in H.
*Diagonal approx: ¥(x)=U(x) ¢(x) evaluated at x=i gives
Yi=¥(i)=U(i) d(i)=Ui ¢i  so replace Uij = Ui dij, and this also
solves the Schrodinger equation. A non-standard approx, but it

converges very rapidly to the continuum result as the spacing goes
to zero

*Two particle terms: essentially the same, Vijkl = ij 0kl Vik

Thus, a gausslet basis has a V;; interaction just like a grid.
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Gausslet

-0.665 T T T T T

- |--- FullH
—— Integral

Integral/Full

i Poi:‘]m‘k‘u]l F ,’. i I D
w-0.670F e / o Test

-0.675
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3D variable-grid gausslet bases
* How do we make a 3D gausslet? Easy:
G3p, y,2) = G)G(NG(2)

* These live on a 3D distorted grid. Spacings: near nuclei, ~0.5 Bohr,
edges of atoms: ~4 Bohr

* Working with a basis has a key advantage over a grid: we can
throw in extra functions to better represent singularities,
orthogonalizing them to the gausslets. We now do this, adding in
some Gaussians

7.5 * I i- ! *
5.01 il ¢ o o N
* * * * *
2.5 B O o O O O
h 2'*- 9-* * ¥k ¥ *2 *S
N 0.0 o
of « &« % «8 + 1 Multislicing
—2.51 5 5 5 h
* * * ¥ ¥ * *
O o O O O
—5.01 * * * * *
-7.51 St o o o -
~10 -5 0 5 10
o X % & I* | ] T ] | *u
Simplest type of distortion 10 s 0 s 10
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Results: Gausslet basis-DMRG, Hio chain

Results from many state of the art classical
computing algorithms

(Simons Collaboration on the many electron Our first results with MSG-DMRG
problem)
T I | ! T I ! T
552F . | . I n _5 58 |- [ ~—- DZ (QCDMRG) -
i - ' —— DZ (AFQMC)
-5.54 O  DZ.all methods O - L | -— - TZ (QCDMRG) i
i —— Exact (DMtRG) DZ i = —— TZ(AFQMC) p=—=fF=—tf=====
QZ, all methods 56| —— Qz@AroMmO) .
556+ MRCI+Q QZ o - —— 57 (AFZMC)
B % 57, all methods é»—"? 500 i - | 6——e MSG DMRG .
o o B $
558 o ¢ £&E oo . m 560 )
&2 i g’ngifoaooooo 1 ’ R
'56 B OU\%VV ] /&\e * ,
0 o £& H,, R=2 1 -5.64 B0y’ .
562 ,52@ & §®ucesp -
p F5 S § a
& SF - o H, R=2
_564 _*é}% - ?&)[ﬁ)lc?bms Eﬁ;ca; - _5' : I I :
= ‘és - | 1 | 1
' : : ' 0.6 0.7 0.8 0.9 1
0 10 20 cesle
Index, energy order N ~ 3000 N ~ 1000

MSG-DMRG is arguably now the best of these methods for H-chains
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-5.0

Results: MSG-DMRG, H1o chain LR

' == Triple Zeta ( -
I '1‘\‘ ".| === Quint. Zeta ( .
"5 -59 | | | | o TP ‘{.‘;““‘\ ‘.‘\ ®  Gausslet DM
5.6 DZ — B-saf AL
- ]é H, . NN :
_5.61 __ SZ R —_ 2.0 | _5.6__ “\::-;;;;;ti::j——‘;;:'”;7”
B ] —15 7 — 30
6 % R (a.u)
T T T
-5.62 m=60 — - Chemical accuracy s
= 1k 4 < UCCSD(T) |
-5.63 = £ x—* MRCI+Q
. E AFQMC
T e Vs T - E e S
Z *—¢ =09 i
U s=0.8
-5.64 I I — mE GC—O s=0.7
l I . - "
= 0 —g———5
0 2¢-08 4e-08 & ——%
Truncation error Reference: Sorella’s QMC ’
is the best reference state |
. . for the complete basis set
1 I l
Details of DMRG calculation imit, not extrapolation of S

Gaussian basis sets!
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Conclusions

Quantum chemistry and electronic structure is a fruitful area
for tensor network methods—but as a mature area, it is also
challenging to have an impact

We have focused on the simplest aspect: setting up decent
Hamiltonians for DMRG and tensor networks. MERA and its
connection to wavelets allowed us to set up our gausslet
bases. For hydrogen chains, our gausslet-DMRG gives state-
of-the-art results.

At the single particle level, we are focusing now on larger Z
atoms, adding Gaussians to the gausslet bases. We are also
exploring further decimations with corrections to the
interaction terms to further reduce the Hamiltonian size. A
key constraint is maintaining a diagonal representation.

The ultimate goal is to make bases with, say, 50 sites per
atom, with simple Hamiltonians, which we use with PEPS for
broad classes of molecules and solids.
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