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The tensor network toolbox

Tensor network: many-body state )
defined by contracting network of
(local) tensors

I
—
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eg  MPS - -P—P—9—9—9-

Numerical tool on classical and quantum computers .IM

Analytical tool that provides “dual” descriptions

Conceptual tool to build toy models of complex phenomena
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Motivation: Holography

In holography, gravity emerges from complex QM system J

T

boundary: d-dim

QM system
" time
bulk: (d+1)-dim gravity
Understand this _ Build toy models that
, > : :
emergence using QIT reproduce and explain

o) 7y
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QOutline

[ Random tensor networks as a versatile toy model of holography. ]

Key tool: "Replica trick”. Explains many interesting features by
mapping to simple classical stat mech models.

Three “advanced” features that connect to recent developments:

o

1. Non-perturbative corrections to the entropy

2. Quantifying entanglement

\3. Holographic mapping and “islands”

4/27
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Entropy

Entropy is a central quantity in quantum information theory:

quanfum system A

[ S(A) = -1r pp log pa J density matrix pa

Many interpretations and uses in optimal rates & capacities.

pap— [SE = S(A) = s(B)]

L ) —— 00> + >

Mutual information: [I(A:B) = S(A) + S(B) - S(AB)]

5/27
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Motivation: Entropy in holography

In hologmphy, fher‘e is a remarkably simple formula for entropies:

- are given by areas of bulk minimal surfaces.

A h’Al
(S(, ) = T }

Ryu-Takayanagi (RT) law

time \
slice
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Motivation: Entropy in holography

In holography, fher‘e is a remarkably simple formula for entropies:

Boundary entr . are given by areas of bulk minimal surfaces.

(S( A) = L
-

4G
Ryu-Takayanagi (RT) law

[ S(") <N IYAl }

N qubits/bond
Ya = minimal cut
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Holographic tensor networks

This suggest using TNS to define “exactly solvable” toy model.

Approach: Define boundary state
via tensor network in bulk

simple bulk tensors, e.g.
random tensors

D=2N
For large N random tensor networks,
Ryu-Takayanagi law emerges:
S =Nl | v
Mostly works in any geometry. By now, many variations known = talk by Jens 8/27

Eisert!
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Two interpretations

1. Random tensors = isometries in any direction (“perfect tensors”)

N ly,l many EPR pairs
|LP> =

2. Disorder average > ferromagnetic spin model
large N = low T

We focus on latter interpretation, which is derived using replica frick.

9/27
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The replica trick

Any polynomial function of state can be computed as ‘ tro ®"]J
expectation value given sufficiently many “replicas”: 9p

Example: Réenyi entropy

S,(p) = log tr[p"] = Lf—n log fr[:ffp@’“]}

X = cyclic permutation

How to apply to random tensor networks?

\\&J/ —
> 4 [‘w - (® ( y\) (@ tvﬂ

el
o = S &= ol (x,y) 1
I S g |
N i max. entangled states  random tensors

7y I T 1 & y) =3 I \7'/
p=1
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Replica trick in random tensor networks

Any polynomial function of state can be computed as
expectation value given sufficiently many “replicas”:

‘ tr[Op®n] J

For random tensor networks:

- \-\;% i',-/ e B
;,\\ - X / - [‘P) = (® (xy\) (@ IV;P)J

S S Sl (xy) 7
Y / /
— () TICI | . i
PR T e max. entangled states random tensors
# e
.

Only need to know how to average random tensor! [W&“)Wﬂm o< ) wa

{Resulf: “Partition function” of classical S, spin model!}

11/27
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Replica trick for 2" Renyi si(A) = -log trips2]

W) = (@ xy|) (@ IVx) ) Replica trick: ' trpi =tr(p® p]FA |

(x,y)

12/27
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Replica trick for 2™ Renyi si(A) = -log trips2]

Replica trick: tr p?q =tr(p® p)Fa

12/27
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Replica trick for 2" Renyi si(A) = -log trips2]

Replica trick: tr p?q =tr(p @ p)Fa

=1 +F
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Replica trick for 2™ Renyi si(A) = -log trip,2]

¥) = (@ {Xyl) (@ l‘&)) Replica trick: trpi = tr(p® p)Fa

(x,y)

Pick I vs F at each vertex.
Each loop is trace: factor D=2N

12/27
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Replica trick for 2™ Renyi si(A) = -log trip,2]

W) = (@ (Xyl) (@ l‘&)) Replica trick: trpx = tr(p® p)Fa

{Ising variables & boundary condi’rions!J

12/27
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2"d Renyi entropy SA(A) = log tripy]

tr[pa2] = partition function of ferromagnetic
Ising model at 1/T = log(D)

Result: |S,(A) = -log tr[pa2] = log(D) ly,l

domain wall!

1827
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Mutual information phase

transition
2 . B phase transition
—)
(1(AB) = 0| I(A:B) » 0|

At phase transition, S, spin model for S (AB) has high degeneracy:

<1 >

[d(x, ) +d(z, X) = d(I, x)}

L P

| Result: Nontrivial entanglement J
spectrum. . o . .
Nonperturbative corrections that do not vanish in large N limit! 15727
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What does it mean?

Random tensor networks (RTN) provide intuitive foy model. Reproduce
Ryu-Takayanagi formula (+ much more). Analyzed using replica trick.

Relevance for holography? nyu-Takayanagi formula is proved
similarly. But: Einstein equations =» nonftrivial spectrum!

Is all hope lost? No! Remarkably, RTN match J
precisely so-called fixed-area states in holography.

Moreover, general states can be expanded in terms of fixed-area states.
Under certain “diagonal approximations”, can lift results!

Similarly, random quantum circuit models have recently
been studied, exhibit interesting phenomenology.

16/27
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Entanglement in
holographic tensor networks
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Partial transpose and negativity

Partial transpose: pABr" =

If pag is not entangled, then this operator has eigenvalues A; > O
Thus negative eigenvalues 2, < O diagnose entanglement. Peres

Logarithmic negativity: |Ey = log 2, I)LiIJ >0 Plenio

This is an entanglement measure. If Ey > O then pag is entangled.

19/27
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Negativity in random tensor networks
Approach: Compute even Rényi negativities

{ ok = 2 [41%6 = tr (pagh)? = tr pag®2 X, XB_I]

using replica trick and analytically continue to k=1/2.

Resulting statistical model has S, permutation degrees. Ground state:
Il

d(I, 7) + d(z, X) = d(I, X)
d(I, 7) + d(z, X)) =d(I, X?)
d(X, 7) + d(z, X1) = d(X, X1)

Interestingly, such 7 exist and we can count them!
20/27
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Holographic negativity

In large D limit: [ ~ 15 I(A:B) J

Relevance for holography? Similar replica trick possible fo € €
evaluate in fixed area states; agreement fo leading order.

Surprising (in both calculations): Solution is "replica symmetry breaking”,
i.e. does not respect Z,, symmetry of boundary conditions.

How to further dissect entanglement of holographic states?

Other interesting 'permutation tr Papc®" MMy Mg Tie
observables“?
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Holographic mapping
and “islands”
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Holographic mappings

AdS/CFT is duality between two theories = "dictionary” that maps
states & observables. How to incorporate into toy model?

{Approach: Define bulk-boundary mapping via tensor ne’rworkq

\ /L T . red legs: bulk degrees
TR ;i: black legs: boundary degrees

1 I Y { . {.\. [“logICGl" bulk states are encoded |n]
ST &

“physical” boundary Hilbert space

23/27

Pirsa: 20110023 Page 26/30



PowerPoint Slide Show - [replicas_pi]

Holographic codes

If bulks legs have small dimension d << D, obtain error correcting code
that satisfies “subregion duality”, a key QI feature of AdS/CFT:

QR

...for isometries U, V.

Bulk degrees of freedom in a (b) get encoded into A (B)!J v

In particular, bulk corrections to entropy: [ S(A) = N Iyl + S(a) |
24/27
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Subregion duality from decoupling

By decoupling, suffices to prove that (I( :bB) = 0] in Choi state:

Schematically:
4 b

S( ) = lOg(d) |al

L L LTI, s69)=togo) I

S 3n S(abB) = log(D) I¥al + log(d) lal

Assume bulk legs have small dimension d << D. 25/27
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Quantum minimal surfaces and islands

What if bulk entropy is not small?

{ S,(A) = min { N Iyl + S,(a) } J V4

“Quantum minimal surface”, minimizes “generalized entropy”.
Proof using replica trick (additional action from bulk state)!

-]

E.g., if we add highly entangled state between distant bulk
sites, obtain “island” disconnected from boundary.

developments on black hole information paradox that seek

(Holographic counterparts feature crucially in very recent
to give a bulk picture of black hole evaporation.

Surprising that the simple RTN model reproduces these features!?
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Summary

raphy offers remarkable connection between
geometry and entanglement.

X '\I\‘f vy

17> Tensor networks offer tools, models, mechanisms.

%% { bl\- RTN versatile & easy to analyze via replica
F ¥ t L trick.

Ongoing research to exploit connections.

Mo’rwahon ranges from trying to understand the ¢ e of space
From quan’rum mechamcs to learning how duallhes can help 5|mula’re
lex quantun . on (quantum) computers...

-]

Thank you for your attention!
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